Несмотря на бурное развитие электромобилей и водородных транспортных средств, из ископаемого сырья ещё долго будет востребованным, что даёт «переходным» гибридным автомобилям возможность и право на долгую и благополучную жизнь.

Аккумуляторным электромобилям, кроме дорогой Tesla Model S , остро недостаёт автономности, их запас хода пока ограничен, а время заряда по прежнему велико. Для активной эксплуатации водородных автомобилей нет инфраструктуры, заправки для них по всей планете можно чуть ли не по пальцам сосчитать.

В этих условиях компания Toyota с целью создания экономных гибридов, сочетающих по мере возможности преимущества бензиновых и электрических автомобилей, разрабатывает совмещённый с генератором электрического тока, так называемый линейный генератор с двигателем со свободным поршнем (Free Piston Engine Linear Generator, FPEG).

Научные публикации по технологии FPEG регулярно появляются в печати в последние годы. Но Toyota, вероятно, впервые пробует применить линейный генератор в транспортном средстве.

Обычный двигатель внутреннего сгорания используется в автомобилях для того, чтобы вращать колёса. Вместо этого, FPEG вырабатывает электроэнергию, которую можно использовать для питания тяговых электромоторов или для накопления в аккумуляторах.

В отличие от традиционных ДВС в линейном двигателе со свободным поршнем нет вращающегося коленчатого вала. Вместо этого под действием сгорающего внутри одной большой камеры топлива поршень перемещается в прямом и обратном направлении.

Поршень FPEG, над которым работают инженеры Toyota, оборудован W-образным постоянным магнитом. При перемещениях поршня туда и обратно, магнит движется вместе с ним внутри обмоток стационарных катушек, в результате чего генерируется электрический ток.

Конструкция FPEG проще конструкции традиционных бензиновых и дизельных двигателей. Технология отлично подходит для использования как в гибридных автомобилях, так и в электрических в качестве «расширителя диапазона», которым GM оборудует свои модели Volt.

Пока ещё Toyota не готова предложить массовую серийную версию FPEG. Тестовым моделям предстоит пройти немалый путь до внедрения. Наиболее мощные линейные генераторы способны «выдавать» около 10 кВт, или приблизительно 13 л.с.

Для движения по скоростным шоссе этого явно маловато, даже если закрыть глаза на крайне вялый разгон. Однако, вполне возможно, что в качестве первого шага подобные силовые установки появятся под капотом лёгких транспортных средств, предназначенных для регулярных пригородных рейсов на работу и домой.

Если ротор асинхронной машины, включенной в сеть с напряжением U1, вращать посредством первичного двигателя в направлении вращающегося поля статора, но со скоростью n2>

Почему мы используем Асинхронный Электрогенератор

Асинхронный генератор - это работающая в генераторном режиме асинхронная электрическая машина (ел.двигатель). При помощи приводного двигателя (в нашем случае ватродвигателя) ротор асинхронного электрогенератора вращается в одном направлении с магнитным полем. Скольжение ротора при этом становится отрицательным, на валу асинхронной машины появляется тормозящий момент, и генератор передает энергию в сеть.

Для возбуждения электродвижущей силы в его выходной цепи используют остаточную намагниченность ротора. Для этого применяются конденсаторы.

Асинхронные генераторы не восприимчивы к коротким замыканиям.

Асинхронный генератор устроен проще синхронного (например автомобильного генератора): если у последнего на роторе помещаются катушки индуктивности, то ротор асинхронного генератора похож на обычный маховик. Такой генератор лучше защищен от попадания грязи и влаги, более устойчив к короткому замыканию и перегрузкам, а выходное напряжение асинхронного электрогенератора отличается меньшей степенью нелинейных искажений. Это позволяет использовать асинхронные генераторы не только для питания промышленных устройств, которые не критичны к форме входного напряжения, но подключать электронную технику.

Именно асинхронный электрогенератор является идеальным источником тока для приборов, имеющих активную (омическую) нагрузку: электронагревателей, сварочных преобразователей, ламп накаливания, электронных устройств, компьютерную и радиотехнику.

Преимущества асинхронного генератора

К таким преимуществам относят низкий клирфактор (коэффициент гармоник), характеризующий количественное наличие в выходном напряжении генератора высших гармоник. Высшие гармоники вызывают неравномерность вращения и бесполезный нагрев электромоторов. У синхронных генераторов может наблюдаться величина клирфактора до 15%, а клирфактор асинхронного электрогенератора не превышает 2%. Таким образом, асинхронный электрогенератор вырабатывает практически только полезную энергию.

Еще одним преимуществом асинхронного электрогенератора является то, что в нем полностью отсутствуют вращающиеся обмотки и электронные детали, которые чувствительны к внешним воздействиям и довольно часто подвержены повреждениям. Поэтому асинхронный генератор мало подвержен износу и может служить очень долго.

На выходе наших генераторов идет сразу 220/380В переменного тока, который можно использовать напрямую к бытовым приборам (например обогреватели), для зарядки аккумуляторов, для подключения к пилораме, а также для параллельной работы с традиционной сетью. В этом случае Вы будете оплачивать разницу потребленной из сети и сгенерированной ветряком. Т.к. напряжение идет сразу промышленных параметров, то Вам не понадобятся различные преобразователи (инверторы) при прямом включении ветрогенератора к Вашей нагрузке. Например Вы можете напрямую подключить к пилораме и при наличии ветра – работать так, как если бы Вы просто подключились к сети 380В.

Если ротор асинхронной машины, включенной в сеть с напряжением U1, вращать посредством первичного двигателя в направлении вращающегося поля статора, но со скоростью n2>n1, то движение ротора относительно поля статора изменится (по сравнению с двигательным режимом этой машины), так как ротор будет обгонять поле статора.

При этом скольжение станет отрицательным, а направление э.д.с. Е1, наведенной в обмотке статора, а следовательно, и направление тока I1 изменятся на противоположное. В результате электромагнитный момент на роторе также изменит направление и из вращающего (в двигательном режиме) превратится в противодействующий (по отношению к вращающему моменту первичного двигателя). В этих условиях асинхронная машина из двигательного перейдет в генераторный режим, преобразуя механическую энергию первичного двигателя в электрическую. При генераторном режиме асинхронной машины скольжение может изменяться в диапазоне

при этом частота э.д.с. асинхронного генератора остается неизменной, так как она определяется скоростью вращения поля статора, т.е. остается такой же, что и частота тока в сети, на которую включен асинхронный генератор.

Ввиду того, что в генераторном режиме асинхронной машины условия создания вращающегося поля статора такие же, что и в двигательном режиме (и в том и в другом режимах обмотка статора включена в сеть с напряжением U1), и потребляет из сети намагничивающий ток I0, то асинхронная машина в генераторном режиме обладает особыми свойствами: она потребляет реактивную энергию из сети, необходимую для создания вращающегося поля статора, но отдает в сеть активную энергию, получаемую в результате преобразования механической энергии первичного двигателя.

В отличие от синхронных асинхронные генераторы не подвержены опасностям выпадения из синхронизма. Однако асинхронные генераторы не получили широкого распространения, что объясняется рядом их недостатков по сравнению с синхронными генераторами.

Асинхронный генератор может работать и в автономных условиях, т.е. без включения в общую сеть. Но в этом случае для получения реактивной мощности, необходимой для намагничивания генератора, используется батарея конденсаторов, включенных параллельно нагрузке на выводы генератора.

Непременным условием такой работы асинхронных генераторов является наличие остаточного намагничивания стали ротора, что необходимо для процесса самовозбуждения генератора. Небольшая э.д.с. Еост, наведенная в обмотке статора, создает в цепи конденсаторов, а следовательно, и в обмотке статора небольшой реактивный ток, усиливающий остаточный поток Фост. В дальнейшем процесс самовозбуждения развивается, как и в генераторе постоянного тока параллельного возбуждения. Изменением емкости конденсаторов можно изменять величину намагничивающего тока, а следовательно, и величину напряжения генераторов. Из-за чрезмерной громоздкости и высокой стоимости конденсаторных батарей асинхронные генераторы с самовозбуждением не получили распространения. Асинхронные генераторы применяются лишь на электростанциях вспомогательного значения малой мощности, например в ветросиловых установках.

Генератор своими руками

В моей электростанции источником тока является асинхронный генератор, приводимый в движение бензиновым двухцилиндровым двигателем с воздушным охлаждением УД-25 (8 л.с., 3000 об/мин.). В качестве асинхронного генератора без каких-либо переделок можно использовать обычный асинхронный электродвигатель с частотой вращения 750-1500 об/мин и мощностью до 15 кВт.

Частота вращения асинхронного генератора в нормальном режиме должна превышать номинальное (синхронное) значение числа оборотов используемого электродвигателя на 10%. Сделать это можно следующим образом. Электродвигатель включается в сеть и частота вращения в холостом режиме замеряется тахометром. Ременная передача от двигателя к генератору рассчитывается таким образом, чтобы обеспечить несколько повышенное число оборотов генератора. Например, электродвигатель с номинальной частотой вращения, равной 900 об/мин, вхолостую дает 1230 об/мин. В этом случае ременная передача рассчитывается на обеспечение частоты вращения генератора, равной 1353 об/мин.

Обмотки асинхронного генератора в моей установке соединены “звездой” и вырабатывают трехфазное напряжение 380 В. Для поддержания номинального напряжения асинхронного генератора необходимо правильно подобрать емкость конденсаторов между каждой фазой (все три емкости одинаковы). Для подбора нужной емкости я пользовался следующей таблицей. До приобретения необходимого навыка в работе можно проверять нагрев генератора на ощупь во избежание перегрева. Нагрев указывает на то, что подключена слишком большая емкость.

Конденсаторы пригодны типа КБГ-МН или другие с рабочим напряжением не менее 400 В. При выключении генератора на конденсаторах остается электрический заряд, поэтому необходимо принимать меры предосторожности от поражения электрическим током. Конденсаторы следует надежно оградить.

При работе с ручным электроинструментом на 220 В я пользуюсь понижающим трансформатором ТСЗИ с 380 В на 220 В. При подключении к электростанции трехфазного двигателя может случиться, что генератор не “осилит” с первого раза его запуск. Тогда следует дать серию кратковременных включений двигателя, пока он не наберет обороты, или раскрутить вручную.

Стационарные асинхронные генераторы такого рода, используемые для электрообогрева жилого дома, можно приводить в движение ветряным двигателем или турбиной, установленной на небольшой речке или ручье, если таковые есть недалеко от дома. В свое время в Чувашии заводом “Энергозапчасть” выпускался генератор (микро-ГЭС) мощностью 1,5 кВт на базе асинхронного электродвигателя. В. П. Бельтюков из г. Нолинска сделал ветроустановку и в качестве генератора также использовал асинхронный двигатель. Такой генератор можно приводить в движение, используя мотоблок, минитрактор, двигатель мотороллера, автомобиля и т.д.

Свою электростанцию я установил на небольшом легком одноосном прицепе – раме. Для работ вне хозяйства загружаю в машину необходимый электроинструмент и прицепляю к ней свою установку. С роторной сенокосилкой кошу сено, электротягачом пашу землю, бороную, сажаю, окучиваю. Для таких работ в комплекте со станцией вожу катушку с четырехжильным кабелем КРПТ. При намотке кабеля стоит учитывать один момент. Если наматывать обычным способом, то образуется соленоид, в котором будут дополнительные потери. Чтобы их избежать, кабель нужно сложить пополам и наматывать на катушку, начиная с места сгиба.

Глубокой осенью приходится заготавливать дрова на зиму из валежника. Пользуюсь при этом опять-таки электроинструментом. На дачном участке с помощью циркулярной пилы и строгального станка выполняю обработку материала для плотничных работ.

В результате длительного испытания работы нашего Парусного ветрогенератора с традиционной схемой возбуждения асинхронного двигателя (АД), основанной на применении в качестве коммутатора магнитного пускателя выявился целый ряд недостатков, который и привел созданию Шкафа Управления. Который стал универсальным устройством для превращения любого Асинхронного двигателя в Генератор! Теперь достаточно подключить провода от АД двигателя в наше устройство управления и генератор готов.

Как превратить любой Асинхронный Двигатель в генератор - Дом без фундамента


Как превратить любой Асинхронный Двигатель в генератор – Дом без фундамента Почему мы используем Асинхронный Электрогенератор Асинхронный генератор - это работающая в генераторном режиме

Для нужд строительства частного жилого дома или дачи домашнему мастеру может понадобиться автономный источник электрической энергии, который можно купить в магазине или собрать своими руками из доступных деталей.

Самодельный генератор способен работать от энергии бензинового, газового или дизельного топлива. Для этого его надо подключить к двигателю через амортизирующую муфту, обеспечивающую плавность вращения ротора.

Если позволяют местные природные условия, например, дуют частые ветры или близко расположен источник проточной воды, то можно создать ветряную или гидравлическую турбину и подключить ее к асинхронному трехфазному двигателю для выработки электроэнергии.

За счет подобного устройства у вас будет постоянно работающий альтернативный источник электричества. Он снизить потребление энергии от государственных сетей и позволить экономить на ее оплате.

В отдельных случаях допустимо использовать однофазное напряжение для вращения электрического двигателя и передачи им крутящего момента на самодельный генератор для создания собственной трехфазной симметричной сети.

Как подобрать асинхронный двигатель для генератора по конструкции и характеристикам

Технологические особенности

Основу самодельного генератора составляет асинхронный электродвигатель трехфазного тока с:

Устройство статора

Магнитопроводы статора и ротора изготавливают из изолированных пластин электротехнической стали, в которых созданы пазы для размещения проводов обмотки.

Три отдельные обмотки статора могут быть соединены на заводе по схеме:

Их выводы подключают внутри клеммной коробки и соединяют перемычками. Сюда же монтируют кабель питания.

В отдельных случаях может выполняться подключение проводов и кабеля другими способами.

К каждой фазе асинхронного двигателя подводятся симметричные напряжения, сдвинутые по углу на треть окружности. Они формируют токи в обмотках.

Эти величины удобно выражать в векторной форме.

Особенности конструкции роторов

Двигатели с фазным ротором

Их снабжают обмоткой, выполненной по образцу статорной, а выводы от каждой соединяют с контактными кольцами, которые обеспечивают электрический контакт со схемой запуска и регулировки через прижимные щетки.

Такая конструкция довольно сложная в изготовлении, дорогая по стоимости. Она требует периодического наблюдения за работой и квалифицированного обслуживания. По этим причинам для самодельного генератора применять ее в таком исполнении нет смысла.

Однако, если имеется подобный двигатель и ему нет другого применения, то можно выводы каждой обмотки (те концы, которые подключаются к кольцам) закоротить между собой. Таким способом фазный ротор превратится в короткозамкнутый. Его можно подключать по любой рассматриваемой ниже схеме.

Двигатели с короткозамкнутым ротором

Внутри пазов магнитопровода ротора залит алюминий. Обмотка выполнена в виде вращающейся беличьей клетки (за что и получила такое дополнительное название) с замкнутыми накоротко по концам кольцами-перемычками.

Это самая простая схема двигателя, которая лишена подвижных контактов. За счет этого она длительно работает без вмешательства электриков, отличается повышенной надежностью. Ее и рекомендуется применять для создания самодельного генератора.

Обозначения на корпусе двигателя

Чтобы самодельный генератор надежно работал необходимо обращать внимание на:

  • класс IP, характеризующий качество защиты корпуса от воздействий внешней среды;
  • мощность потребления;
  • число оборотов;
  • схему соединения обмоток;
  • допустимые токи нагрузок;
  • КПД и косинус φ.

Схему соединения обмоток, особенно у старых двигателей, бывших в работе, следует вызвонить, проверить электрическими методами. Эта технология подробно расписана в статье о подключении трехфазного двигателя в однофазную сеть.

Принцип работы асинхронного двигателя в качестве генератора

В основу его воплощения заложен метод обратимости электрической машины. Если у отключенного от напряжения сети двигателя начать принудительно вращать ротор с расчетной скоростью, то в обмотке статора будет наводиться ЭДС за счет наличия остаточной энергии магнитного поля.

Остается только подключить к обмоткам конденсаторную батарею соответствующего номинала и по ним станет протекать емкостной опережающий ток, имеющий характер намагничивающего.

Чтобы происходило самовозбуждение генератора, а на обмотках формировалась симметричная система трехфазных напряжений, необходимо подобрать емкость конденсаторов, большую определенной, критической величины. Кроме ее значения на выходную мощность, естественно, влияет конструкция двигателя.

Для нормальной выработки трехфазной энергии с частотой 50 Гц необходимо поддерживать скорость вращения ротора, превышающую асинхронную составляющую на величину скольжения S, которая лежит в пределах S=2÷10%. Ее требуется поддерживать на уровне синхронной частоты.

Отход синусоиды от стандартного значения по частоте отрицательно повлияет на работу оборудования с электрическими двигателями: пилами, рубанками, различными станками и трансформаторами. На резистивных нагрузках с ТЭН и лампами накаливания это практически не сказывается.

Электрические схемы подключения

На практике используются все распространенные способы соединения обмоток статора асинхронного двигателя. Выбирая одну из них создают различные условия для работы оборудования и вырабатывают напряжение определённых значений.

Схемы звезды

Популярный вариант подключения конденсаторов

Схема подключения асинхронного двигателя с обмотками, соединенными звездой, для работы в качестве генератора трехфазной сети имеет стандартный вид.

Схема асинхронного генератора с подключением конденсаторов к двум обмоткам

Этот вариант довольно популярен. Он позволяет питать от двух обмоток три группы потребителей:

Рабочий и пусковой конденсаторы подключаются в схему отдельными выключателями.

На основе этой же схемы можно создать самодельный генератор с подключением конденсаторов к одной обмотке асинхронного двигателя.

Схема треугольника

При сборке обмоток статора по схеме звезды генератор будет выдавать трехфазное напряжение 380 вольт. Если осуществить их переключение на треугольник, то - 220.

Приведенные выше на картинках три схемы являются базовыми, но не единственными. На их основе могут создаваться другие способы подключения.

Как рассчитать характеристики генератора по мощности двигателя и емкости конденсаторов

Для создания нормальных условий работы электрической машины необходимо соблюсти равенство ее номинального напряжения и мощности в режимах генератора и электродвигателя.

С этой целью подбирают емкость конденсаторов с учетом вырабатываемой ими реактивной мощности Q при различных нагрузках. Ее величину рассчитывают по выражению:

Из этой формулы, зная мощность двигателя, для обеспечения полной нагрузки можно рассчитать емкость батареи конденсаторов:

Однако, следует учесть режим работы генератора. На холостом ходу конденсаторы станут излишне нагружать обмотки и нагревать их. Это приводит к большим потерям энергии, перегреву конструкции.

Для устранения подобного явления конденсаторы подключают ступенчато, определяя их количество в зависимости от приложенной нагрузки. Чтобы упростить подбор конденсаторов для запуска асинхронного двигателя в режиме генератора, создана специальная таблица.

Для использования в составе емкостной батареи хорошо подходят пусковые конденсаторы серии K78-17 и им подобные с рабочим напряжением от 400 вольт и больше. Вполне допустимо заменить их металлобумажными аналогами с соответствующими номиналами. Собирать их придется параллельным подключением.

Использовать модели электролитических конденсаторов для работы в цепях асинхронного самодельного генератора не стоит. Они предназначены для цепей постоянного тока, а при прохождении синусоиды, меняющейся по направлению, быстро выходят из строя.

Существует специальная схема их подключения для подобных целей, когда каждая полуволна направляется диодами на свою сборку. Но она довольно сложная.

Конструктивное исполнение

Автономное устройство электростанции должно в полной мере обеспечивать требования безопасной эксплуатации работающего оборудования и выполняться единым модулем, включающим навесной электрощит с приборами:

  • измерения - вольтметром до 500 вольт и частотомером;
  • коммутации нагрузок - три выключателя (один общий подает напряжение от генератора на схему потребителей, а два остальных осуществляют подключения конденсаторов);
  • защит - автоматическим выключателем, устраняющим последствия возникновения коротких замыканий или перегрузок и УЗО (устройство защитного отключения), спасающее работников от пробоя изоляции и попадания потенциала фазы на корпус.

Резервирование основной схемы питания

Создавая самодельный генератор необходимо предусмотреть его совместимость со схемой заземления рабочего оборудования, а при автономной работе – надежно подключать к контуру земли.

Если электростанция создается для резервного питания приборов, работающих от государственной сети, то использовать ее следует при отключении напряжения с линии, а при восстановлении - останавливать. С этой целью достаточно установить рубильник, управляющий всеми фазами одновременно или подключить сложную систему автоматики включения резервного питания.

Выбор напряжения

Схема на 380 вольт обладает повышенной опасностью поражения человека. Ее используют в крайних случаях, когда фазной величиной на 220 обойтись нет возможности.

Перегрузки генератора

Такие режимы создают излишний нагрев обмоток с последующим разрушением изоляции. Они возникают при превышении токов, проходящих по обмоткам из-за:

  1. неправильного подбора емкости конденсаторов;
  2. подключения потребителей повышенной мощности.

В первом случае необходимо тщательно следить за тепловым режимом во время холостого хода. При излишнем нагреве требуется корректировать емкость конденсаторов.

Особенности подключения потребителей

Общая мощность трехфазного генератора состоит из трех частей, вырабатываемых в каждой фазе, которая составляет 1/3 от общей. Ток, проходящий по одной обмотке, не должен превышать номинальную величину. Это надо учитывать при подключении потребителей, распределять их равномерно по фазам.

Когда самодельный генератор создан для работы от двух фаз, то он не может безопасно выработать электроэнергии больше, чем на 2/3 от общей величины, а если задействована всего одна фаза, то - только 1/3.

Контроль частоты

Следить за этим показателем позволяет частотомер. Когда его в конструкцию самодельного генератора не установили, то можно пользоваться косвенным методом: на холостом ходу выходное напряжение превышает номинальное 380/220 на 4÷6% при частоте 50 Гц.

Как сделать самодельный генератор из асинхронного двигателя, Дизайн и ремонт квартир своими руками


Советы домашнему мастеру по изготовлению своими руками самодельного генератора из асинхронного трехфазного электродвигателя со схемами. картинками и видео

Как сделать самодельный генератор из асинхронного двигателя

Всем привет! Сегодня рассмотрим как сделать самодельный генератор из асинхронного двигателя своими руками. Данный вопрос меня давно интересовал, только как то не было времени взяться за его реализацию. А теперь давайте немного займемся теорией.

Если взять и раскрутить от какого нибудь первичного двигателя асинхронный электродвигатель, то следуя принципа обратимости электрических машин можно заставить его вырабатывать электрический ток. Для этого нужно вращать вал асинхронного двигателя с частотой, равной или чуть больше асинхронной частоты его вращения. В результате остаточного магнетизма в магнитопроводе электродвигателя на зажимах статорной обмотки будет индуктироваться некоторая ЭДС.

Теперь возьмем и подключим к выводам статорной обмотки, как показано на рисунке ниже, неполярные конденсаторы С.

При этом по обмотке статора начнет протекать опережающий емкостной ток. Он будет называться намагничивающим. Т.е. произойдет самовозбуждение асинхронного генератора и ЭДС будет расти. Значение ЭДС будет зависеть от характеристики как самой электрической машины, так и от емкости конденсаторов. Тем самым мы с вами превратили обычный асинхронный электродвигатель в генератор.

Теперь поговорим о том, как правильно подобрать конденсаторы для самодельного генератора из асинхронного двигателя. Емкость нужно подбирать так, чтобы генерируемое напряжение и отдаваемая мощность асинхронного генератора соответствовала мощности и напряжению при работе его в качестве электродвигателя. Данные смотри в таблице ниже. Они актуальны для возбуждения асинхронных генераторов напряжением 380 вольт и с частотой вращения от 750 до 1500 об/мин.

С увеличением нагрузки на асинхронный генератор напряжение на его зажимах будет стремиться упасть(увеличиться индуктивная нагрузка на генератор). Для поддержания напряжения на заданном уровне необходимо подключать дополнительные конденсаторы. Для этого можно использовать специальный регулятор напряжения, который при понижении напряжения на выводах статора генератора будет с помощью контактов подключать дополнительные батареи конденсаторов.

Частота вращения генератора в нормальном режиме должна превышать синхронную на 5-10 процентов. То есть если частота вращения составляет 1000 об/мин, то нужно его раскручивать с частотой 1050-1100 об/мин.

Один большой плюс асинхронного генератора в том, что в качестве его можно использовать обычный асинхронный электродвигатель без переделок. Но не рекомендуется особо увлекаться и делать генераторы из электромоторов мощностью более 15-20 кВ*А. Самодельный генератор из асинхронного двигателя отличное решение для тех, у кого нет возможности использовать классический генератор kronotex ламинат. Удачи вам во всем и пока!

Как сделать самодельный генератор из асинхронного двигателя, Ремонт своими руками


Как сделать самодельный генератор из асинхронного двигателя Всем привет! Сегодня рассмотрим как сделать самодельный генератор из асинхронного двигателя своими руками. Данный вопрос меня давно

Электрические двигатели иногда называют «вторичными», поскольку энергию для них необходимо предварительно выработать при помощи «первичного» двигателя и электрогенератора . Но эти бездымные и практически бесшумные, мощные и долговечные двигатели успели занять первое место среди других.

С начала 19 века известно, что провод с током, помещенный между полюсами магнита начинает двигаться. Если из какого-либо проводника сделать рамку и пустить ток по ее контуру, рамка повернется на 90 градусов. Если же взять много таких рамок и натянуть их на общий барабан, а вокруг поставить мощные магниты – получтися электродвигатель постоянного тока. Барабан называют якорем, а концы рамок – витков – присоединяют к распределительному устройству – коллектору – на валу якоря.

Коллектор – это набор изолированных друг от друга пластин, которые во время вращения вала поочередно касаются двух неподвижных металлических щеток. По щеткам к пластинам коллектора подводится постоянный ток. Он проходит по рамке в тот момент, когда щетки касаются соединенных с нею пластин коллектора. А потом вместе с якорем, коллектор поворачивается, к щеткам подходят две другие пластины, и ток получает следующая рамка.

Электродвигатели постоянного тока могут быстро набирать скорость вращения вала и менять ее по нашему усмотрению. Они легко могут дать задний ход, начав вращаться в противоположном направлении.

Однако большинство электростанций вырабатывают не постоянный, а переменный ток

И поэтому, чтобы питать им электродвигатель постоянного тока, переменный ток предварительно выпрямляют . Существуют и электрические двигатели переменного тока, способные напрямую без выпрямления потреблять ток из сети. В таких двигателях неподвижная часть (корпус) называется статором. На внутренней поверхности статора находится три обмотки, три отдельные катушки с проводами, расположенные под углом 120 градусов друг к другу.

Когда через такую обмотку пропускают электрический ток, она становится электромагнитом. Катушки соединяют так, что переменный ток подается на них не одновременно, а со сдвигом по времени. Магнитное поле каждой катушки то усиливается, то ослабевает, то пропадает совсем. В итоге получается, что магнитное поле бежит по внутренней поверхности статора. Это бегущее, «вращающееся» поле может увлечь за собой проводник, поскольку в первый момент, когда проводник еще неподвижен, вихрь магнитных силовых линий возбуждает в нем электрический ток. Дальнейшее движение полностью подчиняется законам движения проводника с током в магнитном поле.

В качестве подвижной части, называемой ротором, обычно применяют обмотку из провода, или делают «беличье колесо» — клетку в виде цилиндра с параллельными прутьями. Концы прутьев соединяют медными кольцами.

В обмотку статора электродвигателя дают переменный ток, и возникает движущееся магнитное поле. Следом за полем начинает вращаться и ротор, совершая полезную работу.

Но скорость ротора никогда не достигает скорости вращения магнитного поля — он всегда немного отстает, а магнитное поле как бы «скользит» вокруг ротора. Без такого скольжения невозможна работа двигателя, поскольку в роторе не будут индуктироваться токи, необходимые для движения в магнитном поле. Из-за этого явления подобные двигатели называют асинхронными, то есть, неодновременными.

Электрические двигатели не имеют равных по к.п.д. – более 90% подведенной электроэнергии они преобразуют в полезную работу. Однако не стоит забывать и о том, что все-таки электродвигатель является вторичным, и при выработке для него электрической энергии неизбежны иные энергетические потери на первичных двигателях, при передаче энергии и т.п.

Просто о сложном – Электрический двигатель для производства электроэнергии

  • Галерея изображений, картинки, фотографии.
  • Электрический двигатель – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Электрический двигатель.
  • Ссылки на материалы и источники – Электрический двигатель для производства электроэнергии.