Устройство проекторов | Введение

Всех нас завораживает волшебный мир кино. Атмосфера кинотеатра позволяет полностью погрузиться в действие и прочувствовать замысел режиссёра, ощутить прилив эмоций и даже в какой-то мере прожить жизнь экранных героев. Разумеется, вряд ли кто-то будет спорить, что одним из основных аспектов столь сильного воздействия является яркое, насыщенное изображение большого формата. И на сегодняшний день такую картинку можно получить лишь при помощи проектора – устройства, которое использует источник света для проецирования кадров на экран. Стоит отметить, что современные проекторы – это весьма высокотехнологичные устройства, однако истоки появления самого принципа формирования такой картинки уходят в глубину веков. Если подойти к вопросу достаточно упрощённо, то первыми зрителями можно считать первобытных людей, которые наблюдали движущиеся тени от огня на сводах пещер. Затем вспоминается знаменитый китайский театр теней, использующий схему, которую мы могли бы назвать сегодня обратной проекцией. А первые массовые устройства возникли лишь в 17 веке. Назывались они "волшебными фонарями", изобретателем которых считают голландского учёного Христиана Гюйгенса. Устройство волшебного фонаря было очень простым: в деревянном или металлическом корпусе был размещён источник света, а изображения для проекции были нарисованы на пластинах из стекла, обрамлённых в рамки. Свет проходил через картинку и оптическую систему, расположенную в передней части аппарата, и попадал на экран.

История волшебного фонаря насчитывает почти три века, и всё это время происходило совершенствование конструкции. Например, для усиления светового потока чуть позже был добавлен рефлектор, а в 19 веке свеча была заменена на электрическую лампу. Кстати, волшебными фонарями часто пользовались бродячие артисты, удивляющие публику невиданным световым зрелищем. Стоит отметить, что такие устройства были распространены и в дореволюционной России, где они применялись в образовательных целях. Более того, диапроектор, любимый нами с детства, является прямым наследником волшебного фонаря. Также нельзя не упомянуть об определяющей роли этого устройства в изобретении кинематографа, с появлением которого волшебный фонарь перестал быть столь популярным, положив, однако, начало всей проекционной технике.

Популярность кино вызвала бурный прогресс оборудования не только для съёмки, но и для воспроизведения, который продолжается до сих пор. Появились специализированные устройства для обучения, такие как оверхед-проекторы , которые до сих пор можно встретить в школах. Им на смену пришли первые модели мультимедийных устройств, которые можно было подключать к различным источникам видеосигнала, а значит – использовать для демонстрации фильмов вне кинотеатров. Дальнейшее развитие технологий позволило организовать просмотр, ничем не уступающий кинотеатральному, в домашних условиях. Идея домашнего кинотеатра покорила энтузиастов и любителей кино и вызвала новый всплеск интереса к индустрии производства фильмов. Помимо этого, массовый спрос на проекторы стал причиной значительного удешевления технологий и разработки по-настоящему доступных моделей. А это, в свою очередь, позволило широко использовать проекционное оборудование и в других областях, таких как образование.

Итак, все современные способы формирования проекционных изображений можно разделить три группы: излучающие, такие как CRT, просветные, такие как LCD, и отражающие, такие как LCoS и DLP. Каждая из них имеет свои особенности, достоинства и недостатки, которые и определяют популярность той или иной системы на рынке.

Устройство проекторов | Основные проекционные технологии

CRT (технология электронно-лучевых трубок)

Несмотря на то, что проекторы , построенные на основе электронно-лучевой трубки, были и остаются достаточно редкими устройствами, для полноценного обзора их упоминание и место в истории современной проекционной техники являются весьма важными. Эти устройства можно с уверенностью назвать прародителями домашних кинотеатров, поскольку они позволяли формировать огромные изображения ещё тогда, когда ни о жидких кристаллах, ни о микрозеркалах ещё никто не слышал. Итак, что же представляет собой CRT-проектор ?

Принцип действия этих устройств знаком каждому, кто помнит старые телевизоры или компьютерные мониторы. Катод, расположенный в основании электронно-лучевой пушки, испускает поток электронов, который разгоняется высоким напряжением. Затем электромагнитная отклоняющая система фокусирует пучок и изменяет направление движения заряженных частиц, в результате чего они бомбардируют внутреннюю поверхность стеклянного экрана, покрытого люминофором, который начинает светиться под действием электронов. Таким образом, электронный луч, прочерчивая каждый кадр строка за строкой, и формирует картинку на экране. Однако, поскольку в подобных устройствах применяются монохромные вакуумные элементы, для получения полноценного цветного изображения одного кинескопа недостаточно. Поэтому в CRT-проекторах устанавливаются три трубки, которые отвечают за формирование базовых цветов: красного, зелёного и синего. Кстати, поскольку от таких устройств всегда требуется большой световой поток, диагональ экрана каждого кинескопа может составлять до 9 дюймов. Далее все три изображения при помощи массивных объективов и различных аналоговых систем коррекции искажений сводятся в единое целое на экране.

Схема технологии CRT

Что касается качества изображения, то даже по нынешним временам его можно назвать замечательным. Во-первых, это отличная цветопередача. Во-вторых, способность воспроизводить низкий уровень чёрного, и, как следствие, демонстрировать картинку с высокой контрастностью. И, в-третьих, возможность воспроизведения практически любого входного разрешения сигнала. Кроме того, такие проекторы могут изменять геометрию картинки, оставляя постоянным количество элементов изображения. Правда, стоит отметить, что такие возможности требуются только в специальных задачах, таких, как, например, совмещение нескольких изображений в авиатренажёрах.

CRT-проекторы – весьма тихие, поскольку в них практически не используются активные системы охлаждения. И при этом они могут непрерывно работать в течение сотен часов, хотя, опять же, такое преимущество для обычного домашнего кинотеатра практически не требуется. Также стоит отметить, что подобная технология проецирования изображения более чем испытана временем, ведь её история насчитывает около пятидесяти лет, а, значит, все возможные сложности производства и эксплуатации были давно уже преодолены. Кстати, такие устройства выпускаются до сих пор.

К сожалению, несмотря на все усилия, яркость демонстрируемого изображения нельзя назвать рекордной. Кроме того, такие проекторы не очень подходят для формирования статических изображений, поскольку люминофор, покрывающий внутреннюю поверхность кинескопа, имеет тенденцию выгорать со временем, а неподвижные картинки, формируемые в течение длительного времени, оставляют фантомные следы, достаточно заметные на других изображениях. Также стоит отметить, что довольно сложная система совмещения трёх базовых сигналов требует периодической калибровки, для проведения которой необходим специалист высокого класса.

Учитывая, что современные технологии воспроизведения изображений больших форматов, подгоняемые модой на объёмную картинку и внеднением стандартов сверхвысокой чёткости развиваются с огромной скоростью, CRT-проекторы на фоне нынешних моделей выглядят эдакими динозаврами: такие же огромные, тяжёлые и устаревшие.

LCD (жидкокристаллическая просветная технология)

С этим способом воспроизведения изображения связана уже современная эра проекционных устройств. Стоит отметить, что формула "новое – это хорошо забытое старое" полностью применима к данному случаю. Как утверждает история, первые попытки создания жидкокристаллических проекторов относятся к началу восьмидесятых годов прошлого века. Фактически идея заключалась в том, чтобы заменить движущуюся плёнку и затвор в кинопроекторе на LCD-матрицу, демонстрирующую видеоряд. И уже к середине десятилетия появились первые коммерческие образцы. Разумеется, эти устройства были не лишены недостатков – типичные показатели: 9 килограммов веса при световом потоке не более 300 люмен, низком разрешении и заметной сетке пикселов – однако они послужили отправной точкой развития доступных средств воспроизведения картинки большого формата и, как следствие, целого направления массовых домашних кинотеатров.

Итак, каким образом работает ЖК-проектор ? В основе функционирования лежит свойство молекул жидкокристаллического вещества менять пространственную ориентацию под воздействием электрического поля. Однако гораздо более важен тот факт, что проходящий через ячейку свет может менять направление плоскости поляризации. Более того, управляя приложенным напряжением, можно изменять это самое направление. Но что это даёт для формирования картинки? Всё очень просто: если добавить до и после ячейки поляризационные фильтры, плоскости поляризации которых взаимно перпендикулярны, можно управлять прозрачностью любого элемента изображения. Разумеется, подобное представление принципа работы достаточно упрощено, однако когда-то всё работало именно так. А теперь добавьте управляющие транзисторы, проводники, дополнительные пиксели для каждого цветового канала, соответствующие цветофильтры – и получите цветную жидкокристаллическую панель.

Итак, у нас есть массив точек, расположенный на стеклянной подложке (для того, чтобы свет мог свободно проходить через матрицу), прозрачностью которых мы можем управлять. Но это еще не проектор : нам потребуется мощная лампа, система охлаждения, управляющая электроника, блок питания, объектив для проецирования изображения и корпус. На первый взгляд, всё довольно просто, однако применение одной матрицы практически сразу же выявило несколько серьёзных недостатков: перегрев LCD-панели, невысокая контрастность и общее ухудшение качеств поляризующих плёнок под действием высоких температур. Поскольку потенциал новой технологии был весьма высок, то дальнейшее её развитие привело к появлению в 1988 году схемы с тремя матрицами, которая получила название 3LCD.

Это конструктивное решение оказалось настолько популярным, что используется в проекторах до сих пор. В чем же его особенность? В том, что, как нетрудно догадаться из названия, в формировании изображения участвуют сразу три матрицы. Итак, свет от источника (как правило, это газоразрядная лампа) попадает на систему дихроичных зеркал, которые установлены в оптическом блоке. Их задача – пропускать свет определенного спектра и отражать всё остальное. Таким образом, белый свет разделяется на три потока, которые формируют базовые цвета изображения: красный, зелёный и синий. Каждый луч проходит через свою монохромную матрицу, формирующую картинку соответствующего цвета, а затем все три составляющие совмещаются при помощи специальной призмы. Полученное изображение проецируется через объектив на экран.


Схема технологии 3LCD

Дальнейший прогресс технологии, который позволил разместить все три матрицы вплотную к призме, что, в свою очередь повысило точность сведения трёх изображений. Кроме того, внедрение полисиликоновой технологии помогло не только повысить сопротивление ЖК-панели тепловому нагреву, но и заметно уменьшить размеры проводников и управляющих транзисторов. Таким образом, значительно повысилась световая эффективность матриц и появилась возможность дополнительного увеличения их разрешения. В современных проекторах также применяется микролинзовые растровые панели, которые направляют световой поток через прозрачную область и тем самым дают дополнительный выигрыш по яркости. Стоит отметить, что технологический процесс продолжает совершенствоваться до сих пор, поскольку предел возможностей пока не достигнут.

Итак, основными достоинствами технологии формирования изображения на основе трёх ЖК-матриц можно назвать высокую яркость картинки, небольшой вес конструкции, легкую настройку и эксплуатацию, а также возможность проецирования изображений очень больших форматов. Что касается недостатков, то к ним обычно относят большое расстояние между пикселями, которое является следствием необходимости размещать между ячейками проводники и управляющие транзисторы. Это приводит к эффекту сетчатости изображения, однако, учитывая перпективы внедрения разрешений, превышающих Full HD при сохранении размера диагонали экрана, подобный вопрос исчезнет уже в ближайшем будущем. Другой серьёзный недостаток, присущий ЖК-проекторам , - это довольно высокий уровень чёрного, и, как следствие, низкая контрастность, однако справедливости ради стоит отметить, что современные решения на основе IPS-матриц демонстрируют уже весьма впечатляющие результаты. Кроме того, недостаточное быстродействие LCD-панелей тоже давно уже не стоит на пути к качественному изображению. А вот шум по-прежнему является актуальным недостатком. Дело в том, что в этих проекторах применяются мощные газоразрядные лампы, нуждающиеся в серьёзной системе охлаждения, в которой применяются вентиляторы, что приводит к повышенному уровню шума. Также стоит отметить, что срок службы лампы составляет от 2000 до 4000 часов, после чего происходит снижение яркости в два раза, а, значит, при интенсивном использовании придётся периодически её менять, что связано с заметными финансовыми вложениями. Кроме того, сами матрицы тоже имеют тенденцию к изменению своих свойств с течением времени.

Кстати, тот самый первый и простой вариант проекционной технологии, когда используются одна ЖК-панель и источник света, послужил основой для множества самодельных конструкций. В Интернете и сейчас есть множество инструкций по самостоятельному изготовлению проекционного устройства при помощи матрицы монитора и проектора для лекций.

LCoS (жидкокристаллическая отражающая технология)

Ближайшим родственником принципа формирования изображения 3LCD является LCoS-технология, которая расшифровывается как Liquid Crystal on Silicon – "Жидкий Кристалл на Кремнии". Итак, в чём же суть? Если говорить совсем просто, то световой поток модулируется жидкокристаллической матрицей, которая работает не на просвет, а на отражение. Как это реализовано на практике? На подложке располагается управляющий полупроводниковый слой, покрытый отражающей поверхностью, а над этим "сэндвичем" находятся матрица из ячеек с жидкими кристаллами, защитное стекло и поляризатор. Свет от источника попадает на поляризатор, поляризуется и проходит через жидкокристаллическую ячейку. На полупроводниковый слой подаётся сигнал, который позволяет управлять плоскостью поляризации входящего света путём изменения пространственной ориентации жидкого кристалла. Таким образом, ячейка становится в той или иной степени прозрачной, позволяя регулировать количество света, которое проходит к отражающему слою и обратно.

На основе этого принципа формирования изображения было разработано несколько коммерческих технологий, причём каждая из них была запатентована. Одни из самых известных – это SXRD от компании Sony и D-ILA от JVC. Кстати, стоит отметить, что несмотря на то, что обе из них активно используются и по сей день, точкой отсчёта следует считать далёкий 1972 год, когда был изобретён жидкокристаллический оптический модулятор. Технологией заинтересовались военные, и несколько лет спустя уже все командные центры ВМФ США были оснащены на основе этих устройств. Разумеется, это были полностью аналоговые аппараты и, кстати, в качестве источника изображения в них выступали электронно-лучевые трубки. Не стоит и говорить, что те были непомерно сложны и дороги. Уже в наше время коммерческой разработкой и усовершенствованием принципа модуляции отражённого света занялась компания JVC, которая представила первый на основе технологии D-ILA в 1998 году. Итак, как же устроен такой аппарат?

В настоящее время в основном используются решения на основе трёх матриц, однако справедливости ради стоит сказать, что существуют и одночиповые LCoS- . Обычно используются две схемы. В первом случае источником света выступают три мощных светодиода красного, зелёного и синего цветов, которые переключаются последовательно и с высокой скоростью, а на отражающей матрице синхронно формируются кадры для каждого потока. Во втором случае белый свет от лампы разделяется на составляющие непосредственно на матрице при помощи специального фильтра, а сам массив ячеек формирует уже полноцветное изображение. Подобные не получили широкого распространения либо по причине невысокого светового потока, либо по причине сложности производства. Поэтому, как и в случае с просветными жидкокристаллическими панелями, наиболее успешной стала схема с тремя LCoS-матрицами.

Итак, свет от источника при помощи системы дихроичных и простых зеркал разделяется на три световых потока, соответствующих красному, зелёному и синему цвету. Далее каждый из них попадает на свою призму-поляризатор (PBS). Затем потоки направляются на отражающие матрицы, модулируются, формируя цветовые компоненты для базовых каналов изображения, проходят обратно через PBS-элементы и сводятся вместе в дихроичной призме. Полученная картинка проецируется через объектив на экран.


Схема технологии D-ILA

Достоинствами этой технологии можно с уверенностью назвать замечательное качество изображения, высокую яркость и контрастность картинки, а также возможность проецирования изображений очень больших форматов. Также стоит отметить, что особенности производства отражающих матриц позволяют располагать управляющие проводники и электронику за отражающим слоем, значит, площадь покрытия пикселей гораздо больше. Иными словами, изображение выглядит гораздо более однородным, чем в случае с просветными панелями. Кроме того, управление массивом точек в компании JVC реализовано при помощи аналоговых сигналов, что позволяет получить более плавные градиенты. А технология производства, помимо всего прочего, позволяет создавать матрицы с очень высоким разрешением, что, безусловно, будет очень актуальным в свете внедрения стандартов изображения 4K.

Что касается недостатков, то в первую очередь стоит упомянуть весьма высокую цену. Позволить такой могут себе лишь весьма обеспеченные энтузиасты домашнего кинотеатра. Кроме того, такие устройства нельзя назвать компактными и лёгкими, поэтому использовать их в мобильных презентациях вряд ли получится. Их удел – большие и средние залы кинотеатров. Поскольку в этих устройствах используются такие же газоразрядные лампы, как и в просветных жидкокристаллических , все недостатки, связанные с их использованием, присутствуют здесь в полной мере. Напомним, это, в первую очередь, шум активных охлаждающих систем, а также ограниченный срок службы лампы, замена которой обойдётся в значительную сумму.

DLP (микрозеркальная технология)

Третьим, и наиболее активным игроком на рынке современных проекционных устройств, можно с уверенностью назвать DPL-технологию, которая также работает по отражающему принципу. Её название – это аббревиатура от Digital Light Processing, что можно перевести как "Цифровая Обработка Света". В основе этой технологии лежит специальная микроэлектромеханическая система, которая представляет собой крошечное зеркало, за положение которого отвечает столь же миниатюрная механика, управляемая при помощи электрических сигналов. Зеркало может находиться в двух положениях. В первом случае оно отражает свет, который после прохождения всего тракта формирует точку на экране. Во втором положении свет попадает на специальное светопоглощающее устройство. Стоит отметить, что благодаря очень маленькому размеру зеркало может переключаться между двумя состояниями очень быстро. Поскольку принцип работы и управления схож с бинарным (света нет – логический ноль, свет есть – логическая единица), то устройства такого типа считаются цифровыми.

Для того чтобы формировать изображение, понадобится целый массив таких микрозеркал вместе с управляющей механикой, поэтому инженеры разработали специальный микрочип, выполненный по микроэлектронной технологии, который называется DMD или Digital Micro Device – "Цифровое Микро Устройство".

Стоит отметить, что эта технология была разработана компанией Texas Instrumens ещё в 1987 году, и по сей день DMD-матрицы выпускаются только этой фирмой. Кстати, первый коммерческий образец проекционного устройства на основе DLP был представлен лишь в 1996 году. Так как же устроены подобные ?

Существуют две основные схемы, представленные на рынке: одночиповая и трёхчиповая. Первая – более дешевая и, соответственно, более популярная, а вторая – более дорогая и менее распространённая.

Итак, схема с одним DMD-чипом работает следующим образом. Свет от источника проходит через быстро вращающееся прозрачное колесо, которое разделено на несколько цветных сегментов. В первом приближении это красный, зелёный и синий цвета. Далее окрашенный световой пучок проецируется на DMD-чип, строго синхронизированный с диском, на котором микрозеркала уже сформировали кадр для данного цвета. Отражённый поток проецируется через объектив на экран. Поскольку, как уже упоминалось, для каждого микрозеркала возможно только одно из двух положений, то оттенки цветов формируются за свет времени, которое каждое микрозеркало проводит в состоянии отражения. А всё остальное делает наше сознание и инерционность зрения, поэтому на экране мы видим не отдельные цвета, а плавно изменяющееся изображение.


Схема одночиповой технологии DLP

Основными достоинствами такой схемы на сегодняшний день являются высокая яркость и отличная контрастность изображения. За счёт конструкции DMD-чипов DLP-устройства также отличаются невиданным временем отклика. Поскольку здесь работает принцип отражения, то эффективность использования светового потока в таких очень высока, а, значит, для получения необходимых значений яркости требуются лампы меньшей мощности. В связи с этим сокращается энергопотребление, а также шум активной системы охлаждения. Стоит также отметить, что DMD-чипы сохраняют свои первоначальные характеристики с течением времени. Кроме того, благодаря простоте конструкции такие устройства, как правило, отличаются относительно невысокой ценой и компактностью габаритов. По однородности изображения и заметности пикселей на экране DLP-технология находится как раз между 3LCD и LCoS.

Что касается недостатков, то они тоже достаточно весомые. В первых моделях цветовое колесо вращалось со скоростью до 3600 оборотов в минуту, поэтому скорость вывода отдельных изображений на экран, с одной стороны, была весьма высокой, а с другой - всё же недостаточной. Из-за этого зритель периодически мог наблюдать так называемый "эффект радуги". Его суть состоит в том, что если на экране отображался яркий объект на тёмном фоне, а взгляд быстро переводился с одного края кадра на другой, то этот яркий объект распадался на красные, синие и зелёные "фантомы". Причём в фильмах таких сцен хватало, и дискомфорт от просмотра также был ощутимым.

Для уменьшения его влияния разработчики начали раскручивать цветовое колесо и увеличивать количество сегментов на диске. Сначала были всё те же красные, зелёные и синие сегменты, но их стало шесть, и располагались они уже друг напротив друга. Таким образом частота выводимых кадров удваивалась, и "эффект радуги" становился менее заметным. Были варианты с добавлением сегментов промежуточных цветов, однако результат был практически таким же – менее заметно, но всё же присутствует. Кстати, отдельно стоит упомянуть проблему цвета и яркости в DLP- . Трёхсегментное колесо позволяло получить хорошую цветопередачу, но всё же снижало яркость, поэтому к нему начали добавлять ничем не окрашенный участок. Это позволило увеличить световой поток, но привело к выбеленным цветам с малым количеством градаций. Тогда Texas Instruments создала технологию Brilliant Color (с тем самым шестисегментным диском с дополнительными промежуточными цветами), которая и помогла исправить положение. В настоящий момент на рынке присутствуют модели с количеством отдельных сегментов на цветовом колесе, достигающим семи.

Справедливости ради стоит сказать, что существуют и двухчиповые DLP- , которые также используют цветовое колесо для разделения света на две составляющие, которые представляют собой смеси красного с зелёным и красного с синим цветов. При помощи системы призм происходит выделение красной составляющей, которая направляется на один из микрозеркальных массивов. Зелёная и синяя компоненты попеременно проецируются на другой чип. Далее две DMD-матрицы модулируют соответствующие лучи, таким образом кадр красного цвета проецируется на экран постоянно, что позволяет компенсировать недостаточную интенсивность соответствующей части спектра излучения лампы. Стоит отметить, что при увеличении стоимости (за счёт использования двух микрозеркальных чипов), подобная схема полностью не решала проблему "эффекта радуги", и широкого распространения не получила. Поэтому производителям не оставалось ничего другого, кроме использования конструкции с тремя микрозеркальными чипами.

В трёхматричных световой поток от источника света разделяется на три составляющих при помощи массива специальных призм. Затем каждый луч направляется на соответствующую микрозеркальную панель, модулируется и возвращается в призму, где происходит совмещение с другими цветовыми компонентами. Далее готовое полноцветное изображение проецируется на экран.


Схема трёхчиповой технологии DLP

Достоинства такой схемы очевидны: высокая яркость и контрастность, низкое время отклика, отсутствие "эффекта радуги", что означает комфорт при просмотре. Опять же, высокая эффективность использования светового потока в таких позволяет применять лампы меньшей мощности, что, в свою очередь, снижает энергопотребление и шум активной системы охлаждения.

Основной недостаток тоже вполне очевиден: это цена. Стоимость одного DMD-чипа в отдельности весьма высока, а уж трёх – и подавно, поэтому трёхматричные модели в основном обслуживают средний сегмент домашних кинотеатров. Вторая трудность состоит в том, что из-за особенностей конструкции оптического тракта в DLP- крайне непросто сделать механический сдвиг линз, поэтому его можно встретить лишь в дорогих моделях.

Возвращаясь к одночиповой схеме, стоит отметить, что современное развитие оптических полупроводниковых технологий и появление светодиодов и лазеров синего и зелёного цветов позволило разработать модели, в которых отсутствует "эффект радуги". Самым простым вариантом стала замена газоразрядной лампы на три мощных светодиода основных цветов. Источники света могут включаться и выключаться очень быстро, поэтому такая схема позволила отказаться ещё и от цветового колеса, а также ещё больше увеличить скорость смены цветных кадров. Кроме того, удалось очень сильно уменьшить энергопотребление и габариты устройства, в том числе и за счёт более простой системы охлаждения. А меньшее тепловыделение так же положительно сказывается на работе всей электроники. Первый такой появился в 2005 году и весил менее полукилограмма, при этом его светового потока было достаточно для проецирования изображения с диагональю 60 дюймов.


Схема светодиодной технологии DLP

Следующим шагом стало использование в качестве источника света полупроводниковых лазеров. Дело в том, что применение таких источников считается весьма перспективным, благодаря отличным цветовым, временным и энергетическим характеристикам. Кроме того, свет, испускаемый лазерами, имеет ещё и круговую поляризацию, которую можно достаточно просто преобразовать в линейную и таким образом упростить конструкцию . Итак, источники когерентного излучения с длинами волн, соответствующими красному, зелёному и синему цвету, поочередно поступают на специальные дифракционные формирователи, которые обеспечивают равномерность света по всему сечению пучка. Затем, после совмещения системой дихроичных зеркал, каждый цветовой компонент проходит через оптический преобразователь, который превращает тонкий луч в широкий световой поток. Массив микрозеркал модулирует падающий свет, и полученное изображение соответствующего цвета проецируется на экран.


Схема лазерной технологии DLP

Самым значительным улучшением таких схем можно считать отсутствие эффекта радуги, а также замечательные результаты по цветопередаче, яркости и контрастности. Применение полупроводниковых светодиодов и лазеров в качестве источника света в позволило не только заметно снизить энергопотребление, но ещё и значительно увеличить ресурс . Производители заявляют о среднем времени наработки на отказ от 10000 до 20000 часов. Кроме того, яркость источника остаётся постоянной в течение всего времени эксплуатации. Правда, доступны подобные устройства пока далеко не всем: цена инновационного продукта по-прежнему на весьма высоком уровне.

Добавим, что на рынке можно встретить модели, которые используют в качестве источника света одновременно и лазеры, и светодиоды. Если быть совсем точными, то лазер всего один – синего цвета, который, однако, отвечает за зелёную составляющую. Как такое возможно? Дело в том, что синий лазер светит на специальную пластину, покрытую люминофором, которая начинает светиться зелёным светом. Красную и синюю составляющие изображения формируют соответствующие светодиоды. Ну а дальше всё как обычно: свет с различной длиной волны попадает поочередно на DMD-чип, а затем выводится на экран.

Кроме того, у этой схемы есть вариации с цветовым колесом, но не просветным, а покрытым люминофором. В первом случае красный цвет формирует светодиод, а зелёный и синий – голубой лазер, который направлен на вращающийся диск с двумя видами люминофора, которые поочередно светятся синим и зелёным светом. Во втором варианте красный светодиод отсутствует, а все три цвета формируются лазером и цветовым колесом с тремя разными люминофорами. Дело в том, что люминофор позволяет избежать так называемого пятнистого шума, а применение лазера – достичь очень насыщенных оттенков.

LDT (лазерная технология)

В предыдущих разделах мы рассмотрели наиболее популярные в настоящее время технологии, широко представленные на рынке. Теперь настала пора познакомиться с совсем уж экзотическим способом формирования изображения.

В главе про DLP- мы рассмотрели применение полупроводниковых лазеров в качестве источника света. А что, если сами лазерные лучи будут формировать изображение непосредственно на экране? Этот вопрос волнует человечество уже не первое десятилетие, однако ответ на него был получен в 1991 году, после того, как была изобретена технология LDT или Laser Display Technology, что переводится как "Технология Лазерного Отображения". Рабочий прототип был представлен в 1997 году, а серийный – в 1999 году. Итак, чем же примечателен физический принцип, основанный на применении лазеров?

Прежде чем ответить на этот вопрос, стоит понять, зачем вообще понадобилось разрабатывать такую технологию. Дело в том, что проекционные устройства 90-х годов прошлого века были недостаточно хороши для воспроизведения очень ярких и при этом очень контрастных изображений с высоким разрешением. Лазеры в силу своих физических особенностей могли исправить положение.

Стоит отметить, что попытки использования когерентных источников света для формирования изображения предпринимались достаточно давно, с 60-х годов. Причём первоначальная идея заключалась в том, чтобы заменить в электронно-лучевой трубке пучок электронов на лазерный луч. В этом случае конструкция значительно упрощалась, а цветопередача улучшалась. Однако в то время оказалось невозможным преодолеть некоторые технические трудности, такие, как создание лазеров, работающих при комнатной температуре, а также системы отклонения луча. Кстати, подобные работы велись и в СССР. Развитие полупроводниковых и микроэлектронных технологий позволило преодолеть вышеуказанные трудности и создать LDT- , однако до массового внедрения таких устройств по-прежнему очень далеко.

Итак, как работает технология LDT? Система построена на использовании трёх лазеров базовых цветов, которые модулируются по амплитуде особыми электрооптическими устройствами. При помощи специальной системы полупрозрачных зеркал лучи объединяются в один световой поток, который пока ещё не является полноценной цветной картинкой. Далее сигнал по оптическому кабелю поступает на оптико-механическую систему развёртки изображения. Кадр строится по тому же принципу, что и в телевизоре, – по строкам: слева направо и сверху вниз. Развёртка изображения по одной оси осуществляется при помощи специального вращающегося барабана с двадцатью пятью специальными зеркалами, а по другой – путём отклонения луча качающимся отражателем. Стоит отметить, что лазер способен описывать на экране 48000 строк или 50 кадров в секунду, а скорость перемещения точки на экране достигает 90 км/с! Такая скорость для нашего довольно инерционного восприятия, разумеется, очень велика, что и позволяет видеть на экране плавно меняющееся изображение. После развёртки световой сигнал поступает на систему фокусировки, которая объединена с отклоняющими устройствами в проекционную головку. Кстати, одной из особенностей системы является то, что источник света может быть удалён от проецирующего устройства на расстояние около 30 метров, что, в свою очередь, означает возможность применения очень мощных лазеров, требующих специальных систем охлаждения, а, значит, – получения изображения огромной яркости.


Схема лазерной технологии LDT

Какими преимуществами обладает подобный принцип формирования проекции? Во-первых, как уже было сказано, это огромная яркость изображения, и, как следствие, возможность проецировать картинку площадью в несколько сотен квадратных метров. Кроме того, её можно проецировать не просто на плоскость, а вообще на всё, что угодно, – и изображение будет оставаться резким в каждой точке! А всё благодаря лазерам: именно они позволяют избавиться от сложной системы сведения и фокусировки лучей. Более того, все остальные преимущества также обусловлены физической природой когерентного излучения. Например, лазеры очень слабо рассеиваются, поэтому создаваемое изображение имеет очень высокую контрастность, в четыре раза превышающую возможности человеческого зрения! Кроме того, поскольку лазеры обладают высокой монохроматичностью, то картинка ещё и обладает расширенным цветовым охватом и высокой насыщенностью. Помимо этого, время работы источников излучения – десятки тысяч часов, поэтому никакие традиционные газоразрядные лампы не в состоянии полноценно конкурировать с ними. То же самое можно сказать и про энергопотребление.

Технология LDT ещё очень молода и не лишена некоторых недостатков. Например, всё та же цветопередача. Для окраски каждого луча применяются специальные кристаллы, которые меняют длину волны, поэтому добиться точного соответствия совсем не просто. Разработчики занимаются этим вопросом, но пока он достаточно актуален. Размеры устройства совсем не маленькие, поэтому мобильность такого под силу только специальной бригаде. Ну и, пожалуй, главный недостаток технологии – это огромная цена, что в принципе неудивительно, поскольку этот продукт ещё очень далек до звания массового. Поэтому в настоящее время технология LDT может заинтересовать лишь крупные компании, которые специализируются на концертной деятельности, крупных световых шоу, а также инсталляциях для серьёзных конференций.

Устройство проекторов | Технологии формирования трёхмерного изображения

Интерес к проецированию объёмной картинки занимает человечество практически со времен изобретения кинематографа. Вариантов реализации было предложено множество, но базовый принцип всегда оставался неизменным: для каждого глаза должно быть сформировано своё изображение.

Современный интерес к объёмной картинке возник после выхода на экраны в 2009 году фильма Джеймса Кэмерона "Аватар". Мир планеты Пандора, показанный в картине в стереоскопическом формате, был столь реалистичен, что новая волна моды на трёхмерное изображение не заставила себя ждать. К тому времени уже был неотъемлемой частью полноценного домашнего кинотеатра, поэтому производители оборудования постарались как можно оперативнее внедрить новую технологию не только в телевизоры, но и в проекционные устройства.

К сожалению, разработчикам не удалось договориться о некоем едином формате, поэтому в настоящий момент на рынке главенствуют две основные технологии: поляризационная и затворная. Первая основана на разделении картинок при помощи поляризаторов. Вначале коммерческое воплощение этой идеи использовало линейную поляризацию, причём плоскости направления волн для каждого глаза были взаимно перпендикулярны. На практике всё было реализовано следующим образом. При помощи двух на экран проецируются два изображения, поляризованные для каждого глаза, специальные очки разделяют картинки, и зритель воспринимает объекты на экране как объёмные. Недостатков у такого способа формирования было несколько: необходимость использования двух , а также специального экрана, который имел повышенную отражающую способность и не менял направление поляризации. Кроме того, зрителю всегда приходилось держать голову прямо для того, чтобы эффект трёхмерности не пропадал. Следующим шагом в развитии этой технологии была замена линейной поляризации на круговую, а также проецирование кадров для каждогоглаза попеременно при помощи только одного устройства. Такой подход позволил держать голову во время просмотра произвольно, однако привёл к потере половины светового потока. Поляризационная технология при всех своих достоинствах практически не используется в домашних кинотеатрах, а применяется в основном в профессиональной сфере.

Второй вариант получения трёхмерного изображения основан на разделении кадров для каждого глаза при помощи специальных очков. демонстрирует попеременно изображения для каждого глаза, при этом частота смены кадров может достигать 120 Гц. Вместо линз в активных очках применяются специальные ЖК-матрицы, которые синхронизированы с и перекрывают световой поток таким образом, что каждый глаз видит только предназначенные для него изображения. Поскольку, как мы уже говорили, наше восприятие достаточно инерционно, потоки вопринимаются непрерывно и складываются в единую трёхмерную картинку. Именно эта технология в настоящее время наиболее активно применяется в домашнем кинотеатре, правда, справедливости ради стоит отметить, что и в профессиональной среде она тоже достаточно популярна.

Итак, процесс получения объёмного изображения понятен, осталось разобраться, какие позволяют воспроизводить такую картинку. На современном этапе развития проекционных технологий получение трёхмерного изображения удалось реализовать на основе LCD, DLP и LCoS-систем. Правда, учитывая, что затворный способ используется в домашнем кинотеатре совсем недавно, разработчикам ещё предстоит решить много вопросов. Например, быстродействие ЖК-матриц пока не в полной мере отвечает запросам по скорости обновления и отклика.

Устройство проекторов | Выводы и перспективы

Итак, мы познакомились с основными проекционными технологиями формирования изображения кинотеатрального формата, а также рассмотрели их особенности, достоинства и недостатки. Ещё десять лет назад были весьма экзотическими средствами отображения, которые только начинали массовое наступление на сферу домашнего применения. За эти годы качество изображения достигло очень высокого уровня, многие технологические недостатки ранних моделей преодолены, а разноообразие устройств позволяет подобрать на свой вкус за весьма приемлемые деньги. Даже внезапно возникшая мода на трёхмерное изображение тут же нашла отражение в выпускаемых моделях.

На сегодняшний день ситуация выглядит следующим образом. Наиболее распространённой технологией можно с уверенностью считать DLP. , построенные на микрозеркальных панелях, встречаются как в недорогом сегменте, так и в среднем. Кроме того, эта технология является ещё и весьма перспективной, причём по нескольким причинам. Во-первых, внедрение светодиодных и лазерных источников света поможет создать массовые проекционные устройства, которые будут весьма миниатюрными и низкопотребляющими, с большим световым потоком, отличной контрастностью, замечательным цветовым охватом и большим сроком службы. А, во-вторых, высокое быстродействие таких панелей создает великолепные возможности для внедрения высокоскоростных способов формирования трёхмерного изображения.

Самым ближайшим конкурентом DLP является технология 3LCD. Несмотря на то, что эта схема не нова, она по-прежнему весьма популярна и в недорогих , и в устройствах средней ценовой категории. Более того, несмотря на заложенные ограничения, например, по контрасту и по размеру расстояния между пикселями, каждое новое поколение матриц не перестает удивлять отличными результатами. Так что на сегодняшний день технологический предел возможностей этого способа формирования изображения ещё не достигнут.

Технология жидких кристаллов на кремнии на сегодняшний день является одной из самых качественных по параметрам картинки, однако и одной из самых дорогих, поэтому такие используются только в домашних кинотеатрах высшего уровня. Тем не менее, такие модели становятся доступнее с каждым годом и даже появляются в среднем ценовом сегменте, однако по этому параметру им до DLP- и LCD- пока очень далеко.

Периодически возникает вопрос возможного влияния проецируемого изображения на здоровье человека. Считается, что картинка, формируемая при помощи технологий 3LCD и LCoS, не имеет каких-либо отрицательных аспектов, поскольку транслируется на экран в сведённом виде, в то время как DLP с одним микрозеркальным чипом последовательно формирует три разноцветных изображения с высокой скоростью. Кстати, некоторые исследования показывают, что частоты смены кадров 180 Гц недостаточно для полного исключения "эффекта радуги" и связанной с ним утомляемости зрения во время длительного просмотра.

Что касается перспектив развития проекционно техники, то очень большие надежды связаны с внедрением полупроводниковых источников света, таких как светодиоды и лазеры, причём не только в сфере домашнего кинотеатра, но и в области профессиональной техники для концертов и световых шоу. Мы уже рассказывали о преимуществах, которые даёт эта технология, поэтому тоит сказать пару слов о возможных последствиях. Пока что способ формирования картинки при помощи лазерных лучей не только весьма перспективен, но и очень молод, а, значит, нет практически никаких данных о возможном влиянии на здоровье человека. Тем не менее, давно известно, что лазерный луч мощностью излучения в 1 мВт может быть опасен для зрения, а, значит, при использовании такой техники должно быть полностью исключена возможность попадания прямого светового потока на зрителей. В общем, вопрос безопасности еще предстоит исследовать.

Возможно, в ближайшем будущем все усилия производителей проекционной техники могут оказаться напрасными, поскольку, как это ни парадоксально, основным конкурентом на рынке домашнего кинотеатра может стать OLED-технология. Судите сами: уже сегодня никого не удивишь ЖК-телевизорами с диагональю 1,5 метра, а модели-рекордсмены и вовсе демонстрируют картинку более 2,7 метров, при том, что средние размеры изображения в домашнем кинотеатре как раз и составляют около 3-4 метров по диагонали. Уже сейчас есть коммерческие образцы моделей OLED-телевизоров на основе гибких подложек, которые позволяют производить не только плоские, но даже вогнутые экраны. А это, в свою очередь, рисует перед нами весьма заманчивые перспективы: возможно, в будущем нам больше не понадобятся ни , ни экраны. Для того чтобы погрузиться в действие фильма, достаточно будет нажать на кнопку электропривода и огромное гибкое полотно, покрытое органическими светодиодами, плавно появится из настенной ниши. Останется только включить кино и наслаждаться изображением.

Выбор проектора в большинстве случаев определяется областью его применения. Мультимедийные модели используют для презентаций и лекций в образовательных и коммерческих целях. В жилых помещениях проекторы применяют для домашних кинотеатров и игровых станций. Портативные карманные устройства, называемые мини- и пико-проекторами, легко транспортируются и умещаются в обычной сумке.

Как выбрать проектор

Независимо от того, выбираете вы проектор для занятий, совещаний или домашнего кинотеатра, проецируемое на экран изображение должно быть качественным. Проекторы относятся к оптическим приборам и многие параметры описываются техническими терминами. На какие свойства потребуется обратить внимание при покупке?

    • Яркость. Этот параметр описывает световой поток лампы проектора и измеряется в люменах (лм). Различают цветовую яркость и яркость белого. Если в спецификации прибора стоит только одно число люменов – это относится к яркости белого цвета. Цветовая яркость в этом случае составляет третью часть от указанного числа.

Чем выше яркость, тем больше число люменов и тем дороже проектор при прочих равных параметрах.

    • Контрастность. Эта величина выражает разницу белого и черного цвета. Например, соотношение 1000:1 показывает, что самый светлый оттенок белого в 1000 раз ярче самого темного оттенка черного. Высокая контрастность означает детализированное проекционное изображение.
    • Разрешение. Это число точек-пикселей, использованных для отображения картинки. Высокое разрешение создает четкое и чистое изображение, что особенно важно при показе текста и видео. Разрешение выражается двумя числами, к примеру, 800 х 600 соответствует отображению 800 точек по горизонтали и 600 точек по вертикали, т. е. картинка состоит из 480 тысяч пикселей.
    • Формат изображения. Измеряется соотношением длин горизонтальной и вертикальной сторон. Нормальное соотношение составляет 4:3. Широкоформатные проекции имеют соотношение сторон 16:10, т. е. дают вытянутую по ширине картинку. Домашние кинотеатры характеризуются сжатием 16:9 для большинства проекторов.
    • Легкость использования. Несложное подключение, быстрый разогрев и выключение лампы проектора, автоматическая коррекция изображения – эти параметры требуются для комфортного использования прибора.
    • Проекционное расстояние. Этот параметр задает расстояние между проекционной установкой и проекцией на экране. Различают длиннофокусные проекторы, которые дают изображение в большом помещении, короткофокусные проекторы для получения картинки на расстоянии 1–2,5 метра и ультракороткофокусные проекторы, которые устанавливают в пределах одного метра до экрана.

Размер изображения на экране зависит от позиционирования прибора и длины фокусного расстояния.

  • Проекционная технология. В большинстве проекторов используется либо одночиповая DLP, либо трехчиповая 3LCD технология. Одночиповая технология применяет запрограммированное цветовое колесо для определения цвета пикселя. Трехчиповая 3LCD уменьшает радужное размытие цветов, которое свойственно DLP-технологии. Еще одна система, LCoS (или SXRD), объединяет лучшие черты обеих предыдущих технологий и используется в дорогих мультимедийных моделях.
  • Подключение. Проектор может подключаться с использованием USB-порта к компьютеру или флеш-носителю информации, цифрового подключения HDMI к ноутбуку и Blu-Ray плейеру, дисплейного порта DVI или VGA для соединения с монитором, видеокамерой и DVD-плейером.
  • Источник света. В бюджетных проекторах используются металл-галогеновые лампы. Светодиодные LED-лампы применяются для получения высокой яркости. Такой источник не выгорает, дольше работает и обеспечивает низкое потребление энергии по сравнению с традиционными галогеновыми лампами такой же яркости. Однако, у LED-лампы более низкая цветопередача. В дорогих моделях гибридные лампы сочетают светодиод с массивом лазеров.

Нижеперечисленные параметры расширяют функциональность проекторов, но не являются критическими для проецирования качественного изображения.

    • Увеличение. Оптическое увеличение – это функция объектива, позволяющая увеличить изображение без искажения или потери качества. Цифровое увеличение масштабирует часть показываемой картинки с потерей качества.
    • Сменные линзы. Объективы на некоторых моделях заменяемы. Это дает гибкость при использовании проектора в разных целях и установке на разном расстоянии до экрана.
    • Беспроводное проецирование. Некоторые проекторы используют беспроводное соединение, чтобы передать изображение с компьютера или смартфона на экран.
    • Интерактивность. Интерактивные проекторы в комбинации со специальным указателем-стилусом делают практически любую поверхность функциональной без необходимости приобретения интерактивной доски. У таких моделей короткофокусное или ультракороткофокусное расстояние, что позволяет проецировать изображение без бликов и тени от стоящего у экрана человека.
    • Поддержка 3D. Многие мультимедийные проекторы позиционируются как 3D-Ready. В большинстве случаев они работают только с компьютерами, оснащенными совместимыми видеокартами. Проекционные установки для домашнего кинотеатра поддерживают HDMI 3D для использования с Blu-Ray плейерами.

При выборе проектора с поддержкой 3D учтите, что номинальная яркость урезается наполовину.

  • Динамики. Некоторые модели оснащены встроенными динамиками. Если приложение, транслируемое проектором, включает звук, предпочтительнее использовать отдельную акустическую систему, подключаемую через предусмотренный аудиовыход. В противном случае мощность встроенных динамиков должна быть не менее 10 Вт.

Лучший мультимедийный проектор

Epson EH-LS10000 – среднефокусный проектор с центральным размещением объектива и фронтальными вентиляционными решетками. Передние ножки вывинчиваются на 17 мм и приподнимают корпус.

Предусмотрена коррекция вертикальных искажений, 5 функций геометрической трансформации картинки и блокировка случайных изменений настроек объектива. Доступен одновременный показ от двух источников и эмуляция высокого разрешения.

Удобная навигация по русифицированному меню с подсказкой функций кнопок. При подключении включается автоматически, при отсутствии сигнала уходит в спящий режим. Позволяет сохранить до 10 вариантов пользовательских настроек, включить режим защиты от детей и блокировку управления.

Две группы синих лазеров применяются как источник света, обеспечивая быстрый запуск и продолжительное время эксплуатации лампы. В комплектацию входят две пары стереоскопических активных очков, которые функционируют в радиусе 10 метров от прибора.

Характеристики

  • Яркость: 1500 лм.
  • Формат: 16:9.
  • Контрастность: 1 млн:1.
  • Технология: 3LCD.
  • Источник: лазерный диод.
  • Срок работы источника: 30 тыс. часов.
  • Диагональ проекции: 0,76–7,62 м.
  • Уровень шума: 19 дБ.
  • Интерфейс: VGA, HDMI, RCA, micro-USB.
  • Температура работы: 5–35 0 С.
  • Поддержка 3D.
  • Размер: 22,5 х 55 х 55,3 см.
  • Вес: 18 кг.


Плюсы

  • Пониженный уровень шума.
  • Высокая контрастность.
  • Пульт ДУ с подсветкой.
  • Три степени мощности источника.
  • Лазерный источник света.
  • Режим удвоения разрешения картинки.
  • Быстрый запуск за 20 секунд и мгновенное отключение.

Минусы

  • Большие размеры и вес.

Отзывы покупателей

Положительно оценивается режим удвоения разрешения, яркость и четкость картинки. Отмечается высокая контрастность, цветопередача и хорошее качество 3D.

Бесшумный проектор, подходит для домашних кинотеатров. Однако, из-за задержки вывода не может использоваться для игр и работы на компьютере. Присутствует дисбаланс цветовых оттенков в ярком режиме, но он несущественный в нейтральном режиме и корректируется вручную.

Epson EH-LS10000 (V11H488040)

Лучший лазерный проектор

Sky Disco Programm Picture – программируемый проектор в алюминиевом корпусе для использования на дискотеках, вечеринках, различных мероприятиях. Оснащен встроенной коллекцией рисунков для проецирования. Специальная программа позволяет создавать собственный текст и картинки, выбирать цвет проекции.

Допускается регулировка скорости смены и перемещения изображений. Используется три источника света: зеленый, фиолетовый и красный лазеры. В комплект входит штатив-тренога.

Характеристики

  • 99 встроенных изображений для проецирования.
  • Температура работы: 5–35 0 С.
  • Время непрерывной работы: 8–12 часов.
  • Размер: 19,5 х 14,1 х 11,2 см.
  • Вес: 1 кг.


Плюсы

  • Лазерный источник света.
  • Компактные габариты.
  • Доступная цена.
  • Большая коллекция изображений, в том числе с эффектом движения.

Минусы

  • Короткий шнур.
  • Малоинформативная инструкция.

Отзывы покупателей

Проектор используется для организации лазерного шоу, обеспечивая приятную светомузыку с эффектом фейерверка. Работает как с музыкой, так и без нее. Интересный эффект создает праздничную атмосферу и поднимает настроение. Отмечается, что у прибора неустойчивая тренога, нет защиты от детей при использовании дома.

Sky Disco Programm Picture

Лучший проектор для дома

Optoma HD36 – оптимальный проектор для использования в домашних условиях. Предусмотрена вертикальная коррекция трапециевидных искажений. Динамически регулируется яркость лампы для подстройки максимальной контрастности. Допускается беспроводное подключение потокового видео.

Управление включает игровой режим для получения быстрого отклика во время игры.

В комплектацию входит пульт, две пары 3D-очков, инструкция на CD, потолочный кронштейн. Встроенные динамики избавляют от необходимости подключения дополнительной аудиосистемы.

Характеристики

  • Разрешение: 1920 х 1080 (Full HD).
  • Технология: DLP.
  • Контрастность: 30 тыс.:1.
  • Яркость: 3000 лм.
  • Источник: газоразрядная лампа мощностью 310 Вт.
  • Срок работы источника: 4000 часов.
  • Мощность динамиков: 30 Вт.
  • Уровень шума: 27 дБ.
  • Формат: 16:9.
  • Интерфейсы: HDMI, DVI, VGA, RCA, Mic 3,5 мм, S-Video, USB.
  • Проекционное расстояние: 1,2–10 м.
  • Температура работы: 5–40 0 С.
  • Поддержка 3D.
  • Размер: 38,6 x 28 x 16,2 см.
  • Вес: 4,5 кг.


Плюсы

  • Встроенные динамики.
  • Высокая яркость лампы.
  • Пульт ДУ с подсветкой.
  • Компактные габариты.
  • Система адаптации изображения при внешнем освещении.

Минусы

  • Неудобное кольцо подстройки объектива.

Отзывы покупателей

Проектор дает яркое изображение с хорошей четкостью даже в недостаточно затемненном помещении. 3D-картинка тоже качественная. Прибор работает тихо, почти не слышен в экономичном режиме. Встречаются жалобы на неудобную ручную настройку резкости.

Покупать этот проектор лучше всего , надежный и проверенный магазин с хорошим сервисом.

Проектор Optoma HD36

Лучший мини-проектор

ViewSonic PLED-W800 – светодиодный портативный проектор. Поддерживает беспроводное соединение через Wi-Fi и Miracast, просмотр документов Microsoft Office и Adobe PDF.

Доступно цифровое увеличение в 2,25 раза и вертикальная коррекция трапециевидных искажений. Предусмотрена блокировка кнопок, разъем для карты памяти до 32 Гб, встроенная звуковая система. В комплект входит адаптер Wi-Fi для прямого подключения к смартфону, CD с инструкцией и чехол.

Информацию можно воспроизводить с USB-носителя, присутствует собственная встроенная память размером 2 Гб, что позволяет отказаться от использования компьютера. Ножка впереди корпуса вывинчивается на 8 см для подъема корпуса.

Характеристики

  • Разрешение: 1280 х 800.
  • Технология: DLP.
  • Формат: 16:10.
  • Яркость: 800 лм.
  • Источник: LED-лампа.
  • Продолжительность работы источника: 30 тыс. часов.
  • Контрастность: 120 тыс.:1.
  • Проекционное расстояние: 0,72–3 м.
  • Диагональ проекции: 0,6–2,5 м.
  • Уровень шума: 34 дБ.
  • Интерфейс: VGA, HDMI, RCA, USB, SD Card, аудио 3,5 мм.
  • Мощность динамиков: 2 Вт.
  • Размер: 17,5 х 13,8 х 5,2 см.
  • Вес: 0,83 кг.


Плюсы

  • Компактные размеры.
  • Быстрое включение за 3 секунды, мгновенное отключение.
  • Просмотр файлов Adobe PDF и Microsoft Office.
  • Пульт ДУ.

Минусы

  • Низкая мощность встроенных динамиков и невысокое качество звука.
  • Низкая яркость лампы.

Отзывы покупателей

Эта миниатюрная модель подходит для проведения выездных презентаций, в образовательных целях и для использования дома. Отмечается невысокая контрастность для этого типа проекторов, но в затемненном помещении качество картинки хорошее.

Заметно шумит при работе. Встроенные динамики тихие с искажениями звука. Подключаются наушники, но качество звука невысокое. Задержка передачи сигнала с компьютера небольшая, что подходит для игр.

Где можно купить:

Купить этот проектор можно в юлмарте , связном , техносиле или в интернет магазине 003.ru .

Лучший мобильный проектор

Lenovo P0510 – ультрапортативный карманный проектор, который работает до 3 часов от встроенного аккумулятора.

Благодаря беспроводному соединению с Miracast или Wi-Fi подключается напрямую к смартфону, совместим с Windows 8.1, Android, iOS и Mac.

Часть устройства разворачивается на 90 градусов, что предоставляет различные варианты установки аппарата для работы, включая проецирование на потолок. Оснащен встроенными динамиками и слотом для размещения карты памяти до 32 Гб. На корпусе предусмотрены прорезиненые ножки.

Характеристики

  • Разрешение: 854 х 480.
  • Формат: 16:9.
  • Диагональ проекции: 0,94–2,8 м.
  • Источник: LED-лампа.
  • Технология: DLP.
  • Яркость: 50 лм.
  • Контрастность: 1000:1.
  • Интерфейс: micro-USB, аудио 3,5 мм, карта памяти microSD.
  • Размер: 10,4 x 10 x 2,5 см.
  • Вес: 180 г.


Плюсы

  • Компактные размеры и вес.
  • Встроенный аккумулятор.
  • Встроенные динамики.
  • Поддержка основных операционных систем.
  • Поддержка беспроводного соединения Miracast и Wi-Fi.
  • Доступная цена.

Минусы

  • Низкая яркость лампы.
  • Низкое разрешение изображения.
  • Отсутствует проводное подключение.
  • Неудобная настройка резкости.

Отзывы покупателей

У проектора продуманная конструкция, быстрое подключение за пару минут. Подойдет для лекций, презентаций и просмотра видео в автономном режиме. Благодаря малым габаритам удобен для транспортировки.

Звук динамиков тихий, но насыщенный, хотя для видео лучше подключать дополнительную акустическую систему. При подстройке параметров, устройство сдвигается. Отмечается люфт у колесика настройки и отсутствие гнезда для установки штатива.

Лучший 3D проектор

Sony VPL-VW500ES – проектор предоставляет высокое разрешение, подходящее для цифровых кинотеатров. Специальная технология растягивает обычные 2D и 3D видео для отображения на 4K-экране, а также преобразовывает 2D в 3D.

Показывает до 60 кадров в секунду, создавая промежуточные кадры для плавного изменения изображения. Предусмотрен встроенный синхронизатор для коммутации с 3D-очками, электромеханический сдвиг объектива, автоматическая калибровка изображения.

Обновление программного обеспечения выполняется автономно через USB-носитель. Две передние ножки вывинчиваются на 25 мм и приподнимают корпус. Можно настроить активацию спящего режима при продолжительном отсутствии сигнала.

Характеристики

  • Разрешение: 4096 x 2160 (4К).
  • Формат: 17:9.
  • Яркость: 1700 лм.
  • Технология: SXRD.
  • Контрастность: 200 тыс.:1.
  • Поддержка 3D.
  • Источник: ртутная лампа мощностью 230 Вт.
  • Продолжительность работы источника: 2000 часов.
  • Интерфейс: HDMI, USB, RS-232C, ИК-приемник, сетевой порт.
  • Диагональ проекции: 1,52–7,62 м.
  • Уровень шума: 26 дБ.
  • Температура работы: 5–35 0 С.
  • CD с инструкцией.
  • Размер: 49,5 x 19,5 x 46,3 см.
  • Вес: 14 кг.


Плюсы

  • Высокое разрешение.
  • Пульт ДУ с подсвечиванием.

Минусы

  • Высокая стоимость.
  • Большие габариты и вес.
  • Маленькая продолжительность эксплуатации лампы.
  • Заметное запаздывание вывода изображения с источника информации на экран.
  • 3D очки не включены в комплект.

Отзывы покупателей

Проектор дает чистое детализированное изображение высокого качества, подходит для домашнего кинотеатра. Отмечается удобное меню, качественная цветопередача и масштабирование картинки.

Стереоскопические очки требуется приобретать отдельно. Шум негромкий и ровный. На гладкой фронтальной поверхности остаются следы пальцев. Присутствует запаздывание вывода изображения, мешающее использованию этой модели для игр.

Лучший LED-проектор

Optoma HD91+ – источник проектора использует светодиодную технологию LED с тремя источниками (красный, синий, зеленый). Встроенный конвертер преобразовывает 2D-видео в 3D.

Предусмотрена автоматическая настройка цветопередачи при включении и вертикальная коррекция изображения.

В комплект входят активные 3D-очки и радиочастотный синхронизатор для подключения.

Доступно автоматическое запоминание пользовательских настроек, автовыключение прибора при отсутствии сигнала в течение заданного времени. Специальный алгоритм добавления промежуточных кадров делает изменение картинки плавным, движение более четким.

Характеристики

  • Разрешение: 1920 х 1080 (Full HD).
  • Контрастность: 600 тыс.:1.
  • Яркость: 1300 лм.
  • Технология: DLP.
  • Источник: LED-лампа мощностью 147 Вт.
  • Срок работы источника: 20 тыс. часов.
  • Уровень шума: 23 дБ.
  • Формат: 16:9.
  • Размер диагонали проекции: 0,76–7,67 м.
  • Проекционное расстояние: 1,5–19 м.
  • Интерфейсы: HDMI, USB, VGA, RS-232C.
  • Температура работы: 5–40 0 С.
  • Поддержка 3D.
  • CD с инструкцией.
  • Размер: 44,3 x 34,5 x 16,1 см.
  • Вес: 7 кг.


Плюсы

  • Пульт ДУ с подсвечиванием.
  • Высокая контрастность.
  • Высокое качество 2D и 3D контента.
  • Интерполяция промежуточных кадров.

Минусы

  • Беспроводное подключение требует дополнительного приобретения специального модуля.
  • Заметное запаздывание вывода изображения с источника информации на экран.

Отзывы покупателей

Проектор дает картинку высокого качества. Практически незаметен радужный эффект, характерный для задействованной технологии проецирования изображения. Работает тихо, подходит для домашнего кинотеатра.

Положительные впечатления при использовании промежуточных кадров в видео, хотя встречаются малозаметные искажения. Отмечается чувствительная задержка изображения при динамичных играх, хотя отставание звука от картинки почти незаметно.

Лучший 4K проектор

– проектор с ультракороткофокусным объективом. Обеспечивает сверхмалое расстояние до проекции, допускается располагать аппарат близко к экрану. Люминесцентный лазерный диод используется как источник света.

Металлический корпус оснащен ручками с обеих сторон для переноски двумя работниками. Предусмотрена автоматическая коррекция искажений картинки и настройка уровня глубины для показа 3D-видео.

Объектив снабжен моторизированными приводами для коррекции фокуса и геометрии. Функция стыковки изображений от нескольких проекторов создает сверхбольшой экран.

Характеристики

  • Разрешение: 4096 x 2160 (4К).
  • Формат: 17:9.
  • Яркость: 2000 лм.
  • Технология: SXRD.
  • Контрастность: ∞ : 1.
  • Поддержка 3D.

В эпоху технологий высокой четкости проекторы набирают все большую популярность, ведь они позволяют воссоздать атмосферу настоящего кинотеатра в домашних условиях. Безусловно, данную идею можно реализовать также с помощью ЖК-телевизора с большой диагональю экрана и поддержкой стандарта видео 4K.

Однако контент с таким разрешением пока еще редкость, да и телевизоры этого класса стоят недешево. Современные же проекторы Full HD способны обеспечить превосходное качество изображения, кроме того, они занимают существенно меньше места.

LCD против DLP

В современных проекторах используются технологии LCD (Liquid Crystal Display) и DLP (Digital Light Processing), различающиеся по принципу формирования изображения. В случае с DLP роль пикселя выполняет миниатюрное зеркальце. Перед набором таких «пикселей» установлен вращающийся светофильтр, разделенный на цветные сегменты.

Свет передается через светофильтр, попадает на зеркала и отражается от них на экран. Технология LCD использует матрицы, которые освещаются отраженным с системы зеркал светом. Каждое зеркало является светофильтром и подает на матрицу только один из трех основных цветов.

Безусловно, обе эти технологии обладают как достоинствами, так и недостатками: например, LCD-проекторы обеспечивают насыщенные цвета, а DLP-решения имеют более высокую контрастность. Из минусов LCD-моделей стоит отметить меньшую глубину черного цвета, а у DLP-проекторов - наличие «эффекта радуги». Однако в современных устройствах эти недочеты практически незаметны.

По результатам наших различных сравнительных тестов LCD-проекторы пусть и не намного, но все же опережают по качеству картинки DLP-решения. Как известно, проекционную технологию LCD разработала японская компания Epson, а первое устройство на основе такого принципа был создано еще 25 лет назад. Все эти годы технология существенно улучшалась и дорабатывалась.


3D-проектор от Epson стоимостью 75 000 рублей поддерживает разрешение Full HD, позволяет подключать смартфоны и планшеты по разъему HDMI MHL и способен отображать картинку с диагональю до 300″

Выбор проектора для дома или домашнего кинотеатра довольно сложная процедура, понадобится учитывать ряд определенных факторов. Большое количество моделей с различными функциями часто могут запутать покупателей. В статье будут рассмотрены характеристики, которые помогут упростить покупку подобной техники.

Сегодня эти устройства используются во многих сферах . Домашние проекторы позволяют насладиться просмотром фильма на большом экране в домашних условиях или показать презентацию в школе, на работе. При этом диагональ экрана может значительно превышать показатель 100 дюймов. Размер проектора небольшой, так что его можно без проблем поместить в любой гостиной. Устройство для домашнего кинотеатра работает при выключенном свете.

Как выбрать проектор

При выборе подобной техники понадобится учитывать ряд нюансов, которые будут напрямую влиять на качество работы и функциональность. Яркость, качество цветопередачи и контрастность являются ключевыми характеристиками при покупке. На дополнительные свойства также стоит обращать внимание, так как зачастую они позволяют улучшить впечатление от его использования.

Яркость

Яркость видеопроектора для дома характеризуется мощностью испускаемого им луча света. Так утверждают, потому что яркость от источника света будет варьироваться в зависимости от размера экрана. Этот показатель измеряется в люменах и может колебаться от 2700 до 20000 Лм. Стоит учитывать, что при настройке передачи цветов яркость и контрастность будут уменьшаться.

Также яркость может меняться в зависимости от выбранного режима . Большинство моделей имеют яркий, презентационный и точный режимы. Последний режим будет иметь максимальную точность и при этом минимальную яркость.

Если проектор будет использоваться при дополнительном освещении, яркость должна перебивать этот фоновый свет. При большой освещенности качество картинки будет уходить на второй план, куда важнее будет сила яркости. От этого показателя будет напрямую зависеть и стоимость . Если проектор будет использоваться в специальной затемненной комнате, показателя в 700 люменов будет вполне достаточно. Для простых гостиных или других комнат лучше выбирать модели с яркость порядка 2000 Лм.

Контрастность

Под характеристикой контрастности подразумевается соотношение черного и белого цвета. Этот показатель влияет на качество картинки и уровень ее восприятия человеком. Уровень контрастности можно определить по качеству изображения неподвижных предметов или вещей в движении.

При низком показателе этого свойства темные предметы могут слиться с черным цветом, и их трудно будет увидеть на изображении. Чтобы избежать этого понадобится правильно настроить гамму для разных режимов просмотра.

Для оценки уровня контрастности специалисты рекомендуют учитывать следующие факторы :

  • На эту характеристику влияет уровень освещения в помещении.
  • Контрастность не сильно влияет на разборчивость отображения надписей при дополнительном свете.
  • Нюансы цветопередачи не зависят от контрастности.
  • Яркость способна в определенных условиях нивелировать недостаток контраста.
  • Заявленный уровень этой характеристики соответствует только при использовании устройства в освещаемой комнате, особенно для дешевых.

Технология проецирования — виды проекторов

Существует большое количество технологий, каждая из которых имеет свои преимущества и недостатки .
Наиболее распространенными являются следующие варианты матриц:

  • Электронно-лучевые трубки . К этой технологии относятся самые первые проекторы, которые были созданы еще в 70-х годах. Такие устройства отличаются большим разрешением, но при этом не имеют высокой яркости. Их вес и стоимость крайне большие, так что в домашних условиях они практически не используются.
  • Жидкокристаллические . Для этих устройств используется совершенно другая технология. Производством таких проекторов занимается бренд Epson. При их создании используется три дисплея с полисиликоновым основанием, это позволяет гарантировать приемлемую цветопередачу и продолжительный срок эксплуатации.
  • Микрозеркала . Эта технология позволяет добиться более насыщенной картинки в сравнении с жидкокристаллическими экранами. Это достигается благодаря меньшему интервалу между зеркалами, их работе на отражение, а также минимальной потере света. Принцип работы этой технологии заключается в последовательном выводе цветов на экран.
  • Трехматричные . В устройствах, изготовленных по этой технологии, свет отфильтровывается при прохождении через зеркала. К минусам такой разработки можно отнести недостаток черного цвета, возможное выгорание матрицы и эффект решетки.
  • Отражающие Lcos . Эта технология предусматривает пропуск потока света путем открытия или закрытия отражающего кристалла. Большая часть подобных устройств имеет матрицу с разрешением 1365х1024. К недостаткам можно отнести высокую стоимость.

Цветопередача

Этот параметр характеризует плавность перехода от черного цвета к любому базовому оттенку. Также от него будет зависеть возможность регулирования цветопередачи. Качественные проекторы позволяют настроить насыщенность белого тона к любому базовому цвету. Существует возможность регулирования по нарастанию или смещению.

Объектив

Зачастую большинство проекторов выводят изображение под прямым углом к объективу или с незначительным вертикальным сдвигом. Такое смещение называют офсетом, но он не всегда указывается в характеристиках. Проекторы средней ценовой категории имеют дополнительное горизонтальное смещение, которое можно регулировать. В дорогостоящих моделях такие настройки можно выполнять с помощью пульта и сохранять в памяти устройства. Эта функция поможет приспособить проектор к гостиной или другой комнате любого размера.

Режим 3D

Существенным минусом просмотра видео с наличием 3D является потеря мощности светового потока устройства. Так что для такого режима лучше выбирать гаджет с дополнительной яркостью.

Также при просмотре возможно двоение и мерцание изображения. В проекторах для реализации 3D может использоваться активный и пассивный способ.

Разрешение

Данный параметр характеризует количество пикселей по ширине и высоте, которые формируют изображение. Чем выше этот показатель, тем более четкой будет картинка при одинаковом размере экрана. Бюджетные модели имеют разрешение 800х600, качество картинки при этом будет низким. А вот разрешение Full HD (1920х1080), позволит насладиться просмотром фильма в полной мере.

Проекционное отношение

Проектор для дома лучше всего выбирать с функцией горизонтального и вертикального сдвига линз, которая переместит объектив и поможет в построении правильного изображения на экране даже при установке устройства в углу помещения. При этом разрешение и четкость изображения не будут урезаны.

Разъемы и интерфейсы

Этот нюанс также является достаточно важным. Большое количество разъемов позволят подключить дополнительную аппаратуру или акустическую систему. Для подключения каких-либо приставок обязательно нужно подобрать подходящий видео интерфейс. Чаще всего используются DVI, VGA и HDMI разъемы. Также имеется возможность приобретения переходников, в случае если интерфейс не подойдет.

Экраны для проекторов

Проекционный экран поможет передать изображение на экран без потери качества . Существуют решения с электрическим или ручным управлением, портативные и стационарные. Для домашнего использования оптимальным выбором станет стационарный экран с электрическим управлением.

Сколько стоит проектор

По стоимости можно выделить следующие категории:

  • Бюджетные . Их цена находится в пределах 1000 долларов. К минусам такого выбора можно отнести недостаток яркости и контрастности, а также невысокое разрешение.
  • Средний класс . Устройства стоимостью до 3000 долларов не имеют существенных недостатков. В сравнении с бюджетными вариантами отличаются дополнительными функциями, оптимальными показателями яркости и контраста.
  • Флагманы . Устройства стоимостью свыше 3000 долларов имеют современные технологии проецирования с ультравысоким разрешением и отличным изображением.

Проектор для домашнего использования будет иметь среднюю стоимость в 2000 долларов. Такое устройство будет иметь оптимальное соотношение цены и качества.

Как работает проектор

Устройство подключается к компьютеру, камере или другому девайсу с подходящим разъемом и транслирует изображение или видео на специальный экран. Проецирование картинки осуществляется по одной из рассмотренных ранее технологий.
Принцип работы следующий:

  1. Лазер или специальная лампа создает 3 цветовых компонента, которые в дальнейшем комбинируются.
  2. После чего сложная технология фокусировки и развертки проецирует изображение . При этом используется система зеркал.
  3. Появляется возможность вывести картинку на любую поверхность, в том числе и неровную.

Проектор — электронно-оптический прибор, принцип действия которого основан на работе световой проекции. Данное оборудование предназначено для создания из получаемого сигнала изображения на удаленном экране.

Внутри корпуса устройства находится лампа, которая является источником светового потока. Проходя через оптическую систему, поток в соответствии с принципами световой проекции разделяется на три цвета (красный, синий, зеленый). Далее он попадает в модулятор (жидкокристаллическую или микрозеркальную матрицу), который создает пиксельную структуру. Блок управления, получая сигналы от источника изображения, регулирует направление работы модулирующей матрицы. Объектив, в соответствии с принципом фокусировки, собирает потоки различных цветов и формирует изображение на экране.

Принцип работы проекторов различного типа

  • . DLP-проекторы. Принцип работы проектора DLP типа основан на использовании микрозеркальных матриц. Каждое зеркало создает один пиксель изображения. Их общее количество соответствует разрешению прибора. Принцип работы проекторов с DLP технологией состоит в одновременном отражении всеми микрозеркалами источника света в объектив.
  • . LCD-проекторы. Принцип работы проектора LCD типа основан на использовании жидкокристаллических матриц трех цветов (синего, зеленого и красного). Каждая ячейка жидкого кристалла представляет собой один пиксель в проецируемом изображении. Принцип работы проекторов с LCD технологией состоит в одномоментном выводе трех цветов, что позволяет добиться естественной цветопередачи.
  • . LCoS-проекторы. Принцип работы проектора LCoS типа основан на сочетании первых двух технологий. В оборудовании используются ЖК-матрицы (как в LCD), но не просветные, а отражающие (как в DLP). Принцип работы проекторов с LCoS технологией заключается в отражении светового потока зеркальными подложками жидких кристаллов.
  • . Лазерные проекторы. Принцип работы проектора лазерного типа заключается в создании картинки при помощи лазерных импульсов (лучей). В конструкции отсутствует объектив. Импульсы не подвергаются рассеиванию, поэтому им не нужна фокусировка. Принцип работы проекторов с лазерной технологией отличается тем, что оптическая система представляет собой конвертер, меняющий только угол отклонения луча.

Характеристики работы проектора

Световой поток. Определяет мощность проектора (возможность создать необходимую яркость получаемого на экране изображения). Яркость современных приборов находится в диапазоне от 600 до 30 000 ANSI-люменов. В соответствии с принципами оптической проекции, чем больше значение светового потока, тем выше качество получаемого изображения.

Разрешение. Определяет качество изображения в аспектах плавности линий, проработанности деталей и четкости графических образов. Разрешение современных проекторов находится в диапазоне от SVGA (600х800) до Full HD (1920х1080). В характеристиках может быть указано большее значение, чем физическое разрешение.

Контрастность. Это отношение величины самого светлого к самому темному участку изображения, создаваемого проектором. Чем больше это отношение, тем различимее изображение, ярче и насыщеннее краски, выше четкость графических символов. Указанный в характеристиках проекторов показатель может достигать 1000000:1.

Цветопередача. Характеристика, определяющая точность передачи цвета в получаемом изображении. Современный проектор поддерживает гораздо больше оттенков цветов, чем способен различить человеческий глаз (до 16,7 миллионов). Лучшие показатели в цветопередаче достигаются приборами, созданными в соответствии с принципом лазерной проекции.