Вероятно, многие замечали, проверяя целостность обмоток электродвигателей, трансформаторов, дросселей с помощью тестера, что если разорвать цепь катушка индуктивности-тестер, а затем тут же случайно коснуться выводов катушки, то можно почувствовать слабый электроудар. Можно этому эффекту не придать никакого значения, можно подумать о том, что вероятно проявляется ЭДС самоиндукции катушки, а можно и призадуматься: а нельзя ли как-то из этого извлечь пользу?


Оказалось, что можно, т.к. ЭДС самоиндукции катушки индуктивности представляет собой вполне конкретный бросок напряжения, амплитуда которого зависит от напряжения питания разрываемой цепи, от индуктивности катушки и от ее добротности. При экспериментальной проверке выяснилось, что если параллельно проверяемой катушке подключить неоновую лампочку типа ТН-0,2, ТН-0,3 и т.п., то при разрыве цепи источник питания-катушка ЭДС самоиндукции катушки вызывает вспышки неоновой лампочки, которые тем ярче, чем выше напряжение питания проверяемой цепи, индуктивность катушки и ее добротность.

Именно этому условию отвечают сетевые обмотки силовых трансформаторов, просто высоковольтные обмотки трансформаторов, обмотки дросселей со значительной индуктивностью, обмотки электродвигателей, т.е. именно те узлы электрооборудования, которые наиболее подвержены выходу из строя из-за электрических перегрузок, приводящих к перегреву обмоток, нарушению изоляции между витками обмотки и появлению короткозамкнутых витков. К.з. витки могут появиться и из-за механических повреждений обмоток. Но в любом случае при их появлении катушка индуктивности (обмотка) резко снижает свою добротность, уменьшается ее сопротивление токам промышленной частоты и она будет нагреваться выше допустимого значения, т.е.станет непригодной к дальнейшему использованию.

Оказалось, что если собрать испытательную схему, приведенную на рисунке, то исправные катушки индуктивности при разрыве цепи питания (нажатии на кнопку) дают яркие вспышки неоновой лампочки. А если в катушке индуктивности имеются короткозамкнутые витки, то вспышек илинет вовсе, или они очень слабые. Именно этот эффект является полезным, ибо он позволяет выявлять негодные, подлежащие выбраковке или ремонту электроизделия.

Очевидно, что обмотки, намотанные толстым проводом и имеющие малое количество витков, т.е. малую индуктивность, проверить этим способом не удастся - даже исправные катушки не будут давать вспышек неоновой лампочки. Это нужно учитывать, чтобы не сделать ошибочных выводов. Но для катушек индуктивности, имеющих омическое сопротивление постоянному току порядка десятков-сотен Ом и более, данная схема выявления короткозамкнутых витков очень удобна. Разъем Х1 может быть любого типа и предназначен для подключения источника постоянного напряжения. Величина напряжения питания не критична и может находиться в пределах 3 - 24 В, т.е. можно использовать любые имеющиеся под рукой батарейки или аккумуляторы. Тумблер S1 служит для отключения прибора при длительных перерывах в работе. Лампа HL1 может быть любого типа на напряжение не ниже чем Епит. Она нужна для контроля подачи напряжения питания на схему (для предупреждения ошибочных выводов о непригодности испытываемой катушки). Полезно рядом с проверяемыми катушками иметь заведомо исправную катушку того же типа для сравнительного контроля. Кнопка S2 может быть любого типа и служит для разрыва цепи питания при проверке катушки. Резистор R1 Тр.(Др.) служит для ограничения тока, протекающего через неоновую лампочку HL2. Х2, ХЗ -штыри типа LU4 с надетыми на них зажимами типа <крокодил>, которые с припаянными к ним гибкими проводниками подключаются непосредственно к выводам проверяемой катушки индуктивности.
Собранный без ошибок прибор в настройке не нуждается. Его можно разместить в любом малогабаритном корпусе. Хочу обратить внимание начинающих радиолюбителей, что данный способ проверки катушек индуктивности на отсутствие или наличие короткозамкнутых витков ни в коем случае нельзя использовать для проверки радиочастотных катушек, ибо могут размагнититься подстроечные сердечники или даже перегореть проводники катушек.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.


Предлагаемый индикатор разрабатывался для проверки на наличие короткозамкнутых (КЗ) витков обмоток различных электротехнических устройств - трансформаторов, машин постоянного и переменного тока, магнитныхусилителей и т. д. Дляуменьшения материальных затрат их магнитопроводы нередко изготавливают из магнитомягких материалов с относительно большими удельными потерями. По этой причине зачастую невозможно получить достоверную информацию о наличии КЗ-витков традиционным способом - по срыву колебаний маломощного генератора , который возможен не только из-за наличия КЗ-витков, но и из-за потерь на гистерезис и вихревые токи в магнитопроводе.

Принцип действия предлагаемого устройства основан на регистрации реакции контура ударного возбуждения, образованного встроенным конденсатором и проверяемой катушкой, на импульс напряжения: если короткозамкнутых витков нет, то при подключении к ней заряженного конденсатора в контуре возникают затухающие колебания, а если такие витки есть, - апериодические.

Схема индикатора изображена на рис. 1. Он содержит конденсатор С2, который совместно с проверяемой катушкой L x образует контур ударного возбуждения; коммутатор на сборке полевых транзисторов VT1, работой которого управляют кнопкой SB1; RS-триггер на элементах микросхемы DD1, служащий для подавления дребезга контактов кнопки, формирователь импульсов на полевом транзисторе VT2 и двоичный счётчик на микросхеме DD2. Светодиод HL1 индицирует состояние счётчика "два и больше".

Устройство работает следующим образом. После включения питания на выходе RS-триггера (вывод 4 элемента DD1.2) устанавливается уровень лог. О, поэтому транзистор VT1.1 открыт, a VT1.2 закрыт. Через открытый транзистор VT1.1 конденсатор С2 заряжается до напряжения источника питания. Поскольку оно больше порогового напряжения транзистора VT2, последний открывается, соединяя вход СР счётчика DD2.1 с общим проводом. Триггеры счётчика при включении питания устанавливаются в произвольное состояние.

Для проверки катушки индуктивности L x , подключённой к зажимам Х1 и Х2, нажимают и удерживают в этом состоянии кнопку SB1. При этом RS-триггер изменяет своё состояние - на выходе (вывод 4) элемента DD1.2 появляется уровень лог. 1. В момент переключения RS-триггера на выходе элемента DD1.3 (вывод 11) появляется короткий импульс, обнуляющий счётчики DD2.1 и DD2.2. Высоким уровнем на затворе закрывается транзистор VT 1.1, отключая заряженный конденсатор C2 от источника питания, и открывается VT1.2, подключая параллельно ему проверяемую катушку. При отсутствии в ней короткозамкнутых витков в контуре L x C2 возникают затухающие гармонические колебания с частотой, зависящей от ёмкости и индуктивности его элементов. При перезарядке конденсатора C2 периодически открывается транзистор VT2, формируя импульсы, которые поступают на вход счётчика DD2.1. Как только амплитуда напряжения в контуре становится меньше порогового напряжения транзистора VT2, поступление импульсов на вход счётчика прекращается и как минимум на одном из выходов счётчика устанавливается уровень лог 1, поэтому зажигается светодиод HL1, сигнализируя об исправности испытуемой катушки. После отпускания кнопки устройство возвращается в исходное состояние. Счётчик вновь обнуляется импульсом сброса с выхода элемента DD1.3.

При наличии в катушке короткозамкнутых витков на вход счётчика поступает только один импульс, и поскольку выход 1 (вывод 3) счётчика DD2.1 не подключён к элементу ИЛИ на диодах VD1-VD5, светодиод HL1 на него не реагирует. Цепь R3VD1-VD4 защищает затвор транзистора VT2 от статического электричества.

К большинству деталей пробника особых требований не предъявляется: резисторы и конденсаторы могут быть любого типа, диоды - любые маломощные кремниевые, светодиод HL1 - любой, желательно повышенной яркости свечения. Главное требование к транзистору VT2 - малое пороговое напряжение. У транзисторов серии КП504 оно не выходит за пределы 0,6...1,2 В, поэтому можно применить транзистор с любым буквенным индексом. Можно использовать транзистор КП505Г (у него пороговое напряжение 0,4...0,8 В).

Устройство собрано на фрагменте универсальной макетной платы размерами 50x30 мм. Для облегчения монтажа транзисторной сборки VT1 (она выпускается в корпусе SO-8 с шагом выводов 1,27 мм) изготовлена переходная плата. Для этого из макетной платы для микросхем с планарными выводами вырезан фрагмент (рис. 2), рассчитанный на монтаж четырёх выводов с шагом 1,27 мм. В фольге широкого печатного проводника с противоположной стороны фрагмента сделан разрез для создания зазора между выводами 5, 6 и 7, 8 сборки. Выводы переходной платы - отрезки лужёного медного провода диаметром 0,7 мм припаяны к получившимся площадкам под выводы 5-8 и впаяны в круглые площадки, которыми оканчиваются печатные проводники под выводы 1-4. Изогнув выводы переходной платы под нужным углом, её можно смонтировать как параллельно основной плате, так и перпендикулярно к ней. Неиспользуемые входы микросхемы DD1 (выводы 8, 9) следует соединить либо с плюсовой линией питания, либо с общим проводом.

Собранное устройство вместе с батареей питания, составленной из четырёх соединённых последовательно элементов типоразмера ААА, помещают в корпус, в качестве которого удобно использовать пластмассовую мыльницу. Положение платы в корпусе фиксируют кусочками поролона, а половинки корпуса скрепляют одну с другой миниатюрными винтами-саморезами. Налаживания устройство не требует.

Как показала проверка, индикатор уверенно определяет наличие КЗ-витков в трансформаторах мощностью от нескольких ватт (трансформатор от сетевого адаптера) до нескольких киловатт (сварочный трансформатор), причём при подключении как к первичной, так и к вторичной обмотке (КЗ-виток создавался искусственно, замыканием отрезка монтажного провода, пропущенного через окно магнитопровода). В устройствах с разветвлённой магнитной цепью (трёхфазных трансформаторах, магнитных усилителях и т. п.) необходимо проверять обмотки на каждом стержне. В машинах переменного тока в связи с различной пространственной ориентацией обмоток проверку следует производить также пообмоточно. Электродвигатели с короткозамкнутым ротором в большинстве случаев можно проверять без разборки - по-видимому, воздушный зазор между ротором и статором создаёт достаточное магнитное сопротивление, ослабляющее влияние короткозамкнутых витков ротора (необходимость разборки возникала только в тех случаях, когда прибор показывал наличие КЗ-витков во всех обмотках). Тестировались двигатели самой разной конструкции и мощности - от маломощных однофазных (ЭДГ разных модификаций, КД-3,5) до трёхфазного импортного мощностью 3,5 кВт (от деревообрабатывающего станка). Коллекторные электродвигатели необходимо проверять при разных положениях якоря.

Литература

1. Кривонос А. Определение короткозамкнутых витков в обмотках трансформаторов и дросселей. - Радио, 1968, № 4, с. 56.

2. Дмитриев В. Прибор для определения межвитковых замыканий. - Радио, 1969, № 2, с. 26.

3. Поздников И. Пробник для проверки катушек индуктивности. - Радио, 1990, № 7, с. 68, 69.


Дата публикации: 16.01.2014

Мнения читателей
  • Александр0107 / 23.06.2016 - 22:22
    ИМХО, лучше вместо формирователя на КП504 и счетчиках ИЕ10 сделать истоковый повторитель, вместо кнопочного управления - генератор импульсов с регулируемым периодом,и наблюдать колебания на выходе повторителя на оосцилле, тогда все будет видно наглядно и безошибочно. А пробник из Радио 1990 #7 , действительно, генерирует даже если есть искусственный КЗ виток.
  • Дмитрий / 30.12.2015 - 15:54
    Прибор работает не по методу обнаружения срыва колебаний, так как задающего генератора здесь вовсе нет. Используется ударное возбуждение контура на испытуемой катушке и образцовом конденсаторе. Затем производится подсчёт затухающих колебаний до тех пор, пока их амплитуда не достигнет некоторого минимального предела, при котором полевик КП504 уже перестаёт открываться. Счётчик считает их, и если насчитает 2 и более импульса, говорит "хорошо", менее - плохо. Проблема в пороге открывания транзистора и его малой крутизне. Т.е., он плохо работает как пороговое устройство. Пробовал 2N7002. Вместо него так и просится компаратор - гораздо лучше должно работать.
  • Юрий / 03.08.2015 - 13:59
    А Вы пробывали его собирать,мы его собрали и он у нас не пошел, опечатки в схеме у Вас случайно нет? полевой транзистор у нас BSS 129 аналог КП 503 так как КП 504 мы не нашли, имеются ли у Вас печатная плата, уж больно хотим его собрать.или напишите мне на почту [email protected]
  • Сергей / 25.05.2014 - 11:58
    Автор что то путает. Куча схем простых и надежных и даже выпускавшимися промышленностью и работающих не на срыв колебаний, а на изменения их параметров. Срыв - обычно это когда полный...ец обмотки.

Кроме проверки на наличие обрыва, надо также проверить катушку на отсутствие внутри нее короткозамкнутых витков. Проверить наличие короткого замыкания внутри обмотки с помощью омметра без предварительной ее разборки невозможно. Поэтому для выявления такого дефекта лучше воспользоваться простым приспособлением, схема которого приведена на рис. 40.

С помощью этого прибора можно определить наличие короткозамкнутых витков внутри катушек индуктивности или обмоток небольших трансформаторов, внутренний диаметр которых не превышает 35 мм. В некоторых случаях прибором удается определить короткозамкнутые витки и в катушках большего диаметра. Следует заметить, что прибор можно приспособить для проверки катушек различных размеров, для этого только надо предусмотреть применение сменных катушек, намотанных на стержни соответствующего диаметра.

Схема и принцип работы прибора. Прибор собран на транзисторе, что позволило сделать его малогабаритным и весьма удобным в эксплуатации. Генератор ВЧ колебаний собран на транзисторе типа П11А, однако можно применить и любой другой транзистор, имеющий такие же параметры. В случае использования транзисторов типа р-п-р полярность подключения генератора к системе питания надо изменить на обратную. Питается прибор от батареи типа КБС-0,5. Катушки индуктивности L1—L3 намотаны на ферритовый стержень и имеют следующие данные: L1 содержит 110 витков провода ПЭЛ 0,15; L2 — 210 витков провода ПЭЛ 0,15; L3—55 витков провода ПЭЛ 0,12—0,17. При сборке прибора катушки надо установить так, чтобы часть ферритового стержня (35—50 мм) находилась над верхней частью корпуса прибора, так как на эту часть стержня при проверке надевают испытуемую катушку. В основу работы прибора положен принцип поглощения энергии колебаний, наводимых высокочастотным генератором в катушке L3 при установке на стержень катушки, имеющей короткозамкнутые витки.

Изменение наводимой э. д. с. фиксируется индикатором, с помощью которого можно установить наличие брака в катушке. В приборе можно применить любой микроамперметр магнитоэлектрической системы с током полного отклонения 50—100 мка. Наиболее хорошо для этой цели подходят приборы типов М4204, М494, М49 (последний тип прибора можно рекомендовать в том случае, когда размеры прибора не критичны, например, при эксплуатации прибора в стационарных условиях).

Сопротивление добавочного резистора R2 следует подбирать опытным путем при налаживании прибора в зависимости от чувствительности примененного индикатора. Необходимо обратить внимание на то, чтобы при отсутствии на ферритовом стержне испытуемой катушки угол отклонения стрелки индикатора был бы не менее 3/4 всей шкалы. Это позволит четко следить за изменением показаний индикатора в случае, когда на стержень надета бракованная катушка.

Вариант прибора с питанием от сети. Для разбраковки катушек в производственных условиях можно применить более простой прибор, в котором вместо стрелочного индикатора использована лампочка накаливания. Схема такого устройства изображена на рис. 41. Лампочка (6,3 в, 0,1 а) включена в коллекторную цепь транзисторного усилителя. Режим работы транзисторов устанавливается посредством резисторов R1 и R2.

Следует иметь в виду, что если при настройке прибора обнаружится отсутствие генерации, то надо поменять концы катушки L1 или L2. О наличии генерации можно судить по отклонению стрелки прибора или по яркости свечения лампочки.

Прибор прост в изготовлении, выполнен из стандартных деталей. Для второго прибора необходимо изготовить выпрямитель. Для этого можно использовать любой маломощный трансформатор питания, со вторичной обмотки которого можно снять 12—15 в.

Режим работы и выходное напряжение стабилизатора, в состав которого входят диод Д808 и транзистор П201, устанавливаются с помощью резистора R5.

Может случиться, что намотанная катушка не содержит короткозамкнутых витков, а в процессе работы появляется сомнение в ее исправности. Как в этом убедиться? Не разбирать же трансформатор, чтобы снова проверить катушку. В таких случаях поможет другой прибор, который позволяет проверять трансформаторы, дроссели и другие катушки индуктивности в собранном виде.

Прибор собран на двух транзисторах и представляет собой генератор низкой частоты. Возникновение колебаний происходит в результате положительной обратной связи между каскадами. Глубина обратной связи зависит оттого, есть в проверяемой катушке короткозамкнутые витки, или они отсутствуют. При наличии замкнутых витков генерация срывается. Кроме того, в схеме есть отрицательная обратная связь, которая регулируется потенциометром R5. Она позволяет при испытании катушек с различной индуктивностью подобрать нужный режим работы генератора.
Для контроля напряжения генератора в схеме есть вольтметр переменного тока. Он состоит из миллиамперметра и двух выпрямительных диодов. Переменное напряжение подается через конденсатор С5. Этот конденсатор служит одновременно и ограничителем, позволяющим установить определенное отклонение стрелки миллиамперметра. Здесь желательно применить миллиамперметр с малым током отклонения (1 мА, 0,5 мА), чтобы измерительная цепь не влияла на работу генератора.
В качестве выпрямительных диодов подойдут диоды типа Д1, Д2 с любым буквенным индексом. При работе генератора подберите емкость конденсатора С5 такой, чтобы стрелка миллиамперметра отклонилась до середины шкалы. Если это не удастся, поставьте последовательно с миллиамперметром резистор и подберите его сопротивление по требуемому отклонению стрелки.
Транзисторы возьмите типа МП39-МП42 (П13-П15) со средним коэффициентом усиления (40-50). Резисторы могут быть любого типа мощностью от 0,12 Вт. Кнопки, выключатель, клеммы можно взять тоже любые.
Питается прибор от батареи «Крона» или любого другого источника напряжением 7-9 В.
Для сборки прибора используйте деревянную, металлическую или пластмассовую коробку подходящих размеров. На передней панели укрепите ручки управления и миллиамперметр, а сверху клеммы для подключения испытываемых катушек.
Как пользоваться прибором? Включите тумблер Вк. Стрелка миллиамперметра должна отклониться примерно до середины шкалы. К клеммам «Lх» подключите выводы проверяемой катушки и нажмите кнопку Кн1. Между базой транзистора Т1 и плюсом питания будет включен конденсатор С1, который с конденсатором С2 составит делитель напряжения, резко уменьшающий связь между каскадами. Если в проверяемой обмотке нет короткозамкнутых витков, то показания миллиамперметра могут увеличиться или незначительно уменьшиться. При наличии и даже одного короткозамкнутого витка колебания генератора срываются, и стрелка возвращается на нуль.
Положение движка переменного резистора R5 зависит от индуктивности проверяемой катушки. Если это, например, обмотка силового трансформатора или дросселя выпрямителя, которые обладают большой индуктивностью, движок должен находиться в крайнем правом по схеме положении. С уменьшением индуктивности проверяемой катушки амплитуда колебаний генератора уменьшается, а при очень малых индуктивностях генерация может вообще не возникнуть. Поэтому с уменьшением индуктивности, движок переменного резистора нужно передвигать влево по схеме. Это позволяет уменьшить глубину отрицательной обратной связи и увеличить тем самым напряжение между эмиттером и коллектором транзистора Т1
При испытаниях катушек очень малой индуктивности-контура приемников с ферритовыми сердечниками, индуктивность которых от 3 до 15 мГн, дополнительно необходимо увеличить глубину положительной обратной связи. Для этого достаточно нажать кнопку Кн2. Прибором можно проверять катушки с индуктивностью от 3 мГн до 10 Гн.

Внимание!

Если не удастся найти переменный резистор на 1,2кΩ, соберите участок схемы возле R5 по следующей схеме:

100Ω R5 1kΩ 100Ω К R3 (---[___]----[___]----[___]---) к R7 | К R6

Переменный резистор должен быть однооборотным и безындукционным, таким, как СП0, СП3, СП4 (либо иностранный эквивалент). Главное, чтобы дорожка была графитовой, а не проволочной.

Резисторы 100 Ω следует припаять к выводам R5, затем надеть на них кембрик либо термоусадочную трубку.

Транзисторы подходят любые из ряда: МП39Б, МП40(А/Б), МП41, МП41Б, МП42, МП42Б (или аналоги). Если изменить разводку платы – можно ставить транзисторы КТ361 (кроме КТ361А), КТ209Д или любые другие маломощные P-N-P с Ку=40…50.

Печатная плата:


(скачать в формате Sprint-Layout 5)

Схема взята из брошюры «Первые шаги радиолюбителя — выпуск 4/1971», развёл печатную плату – Александр Тауенис.

ВНИМАНИЕ! 13/05/2013 обновлена разводка платы, новая версия доступна доступна по той же ссылке . Помимо оригинальной версии для транзисторов МП39-42, в.lay файл включы также версии с транзисторами КТ361 (обычный монтаж) и КТ361 (поверхностный монтаж типоразмера 0805). В SMD-версию включены резисторы 1КОм, поэтому можно использовать обычный переменный резистор R5 на 1 килоом без навесных извращений а-ля 1960-ые.

Если в Вашей школе физику преподавали хорошо, то, наверняка, Вам запомнился опыт, наглядно объяснявший явление электромагнитной индукции.

Внешне это выглядело примерно так: учитель приходил в класс, дежурные приносили какие-то приборы и расставляли на столе. После объяснения теоретического материала начинался показ опытов, наглядно иллюстрирующий рассказ.

Для демонстрации явления электромагнитной индукции требовались весьма значительных размеров, мощный прямой магнит, соединительные провода и прибор под названием гальванометр.

Гальванометр внешним видом представлял собой плоский ящик размером чуть побольше стандартного листа формата А4, а за передней стенкой, закрытой стеклом помещалась шкала с нулем посередине. За этим же стеклом можно было увидеть толстую черную стрелку. Все это было достаточно различимо даже с самых последних парт.

Выводы гальванометра с помощью проводов соединялись с катушкой, после чего внутри катушки просто рукой перемещался вверх - вниз магнит. В такт перемещениям магнита из стороны в сторону перемещалась стрелка гальванометра, что свидетельствовало о том, что через катушку протекает ток. Правда, уже после окончания школы, один знакомый учитель физики рассказывал, что на задней стенке гальванометра имелась потайная ручка, которой от руки приводилась в движение стрелка, если опыт не удавался.

Сейчас такие опыты кажутся простыми и почти не заслуживающими внимания. Но электромагнитная индукция теперь применяется во многих электрических машинах и приборах. В 1831 году ее изучением занимался Майкл Фарадей.

В то время еще не было достаточно чувствительных и точных приборов, поэтому ушло немало лет на то, чтобы догадаться, что магнит должен ДВИГАТЬСЯ внутри катушки. Пробовались различной формы и силы магниты, намоточные данные катушек также менялись, магнит к катушке прикладывался по-разному, но только переменный магнитный поток, достигнутый движением магнита, привел к положительным результатам.

Исследованиями Фарадея было доказано, что электродвижущая сила, возникающая в замкнутой цепи, (катушка и гальванометр в нашем опыте) зависит от скорости изменения магнитного потока, ограниченного внутренним диаметром катушки. При этом абсолютно безразлично, каким образом происходит изменение магнитного потока: то ли за счет изменения магнитного поля, то ли за счет перемещения катушки в постоянном магнитном поле.

Самое интересное в том, что катушка находится в собственном магнитном поле, созданном протекающим через нее током. Если в рассматриваемом контуре (катушка и внешние цепи) ток будет по каким-либо причинам изменяться, то будет изменяться и магнитный поток, вызывающий ЭДС.

Подобная ЭДС носит название ЭДС самоиндукции. Изучением данного явления занимался замечательный русский ученый Э.Х. Ленц. В 1833 году он открыл закон взаимодействия магнитных полей в катушке, приводящий к самоиндукции. Этот закон известен теперь как закон Ленца. (Не путать с законом Джоуля - Ленца)!

Закон Ленца говорит о том, что направление индукционного тока, возникающего в проводящем замкнутом контуре таково, что он создает магнитное поле, противодействующее изменению того магнитного потока, которое вызвало появление индукционного тока.

При этом катушка находится в собственном магнитном потоке, который прямо пропорционален силе тока: Ф = L*I.

В этой формуле присутствует коэффициент пропорциональности L, также называемый индуктивностью или коэффициентом самоиндукции катушки. В системе СИ единица измерения индуктивности называется генри (Гн). Если при силе постоянного тока 1А катушка создает собственный магнитный поток 1Вб, то такая катушка обладает индуктивностью в 1Гн.

Подобно заряженному конденсатору, имеющему запас электрической энергии, катушка, через которую протекает ток, обладает запасом магнитной энергии. За счет явления самоиндукции, если катушка включена в цепь с источником ЭДС, при замыкании цепи ток устанавливается с задержкой.

В точности так же он не сразу прекращается при отключении. При этом на выводах катушки действует ЭДС самоиндукции, значение которой значительно (в десятки раз) превышает ЭДС источника питания. Например, подобное явление используется в катушках зажигания автомобилей, в строчных развертках телевизоров, а также в стандартной схеме включения люминесцентных ламп. Это все полезные проявления ЭДС самоиндукции.

В некоторых случаях ЭДС самоиндукции носит вредный характер: если транзисторный ключ нагружен обмоткой катушки реле или электромагнита, то для защиты от ЭДС самоиндукции параллельно обмотке устанавливают защитный диод полярностью обратной ЭДС источника питания. Это включение показано на рисунке 1.

Рисунок 1. Защита транзисторного ключа от ЭДС самоиндукции.

Часто возникают сомнения, а нет ли в трансформаторе или обмотках двигателя короткозамкнутых витков? Для подобных проверок используются различные приборы, например, RLC - мосты либо самодельные приборы - пробники. Однако, проверить наличие короткозамкнутых витков можно при помощи простой неоновой лампы. Лампа может подойти любая - даже от неисправного электрочайника китайского производства.

Для проведения измерения лампу без ограничительного резистора необходимо подключить к исследуемой обмотке. Обмотка должна иметь наибольшую индуктивность; если это сетевой трансформатор, то подключайте лампу к сетевой обмотке. После этого через обмотку следует пропустить ток силой в несколько миллиампер. Для этой цели можно воспользоваться источником питания с последовательно включенным резистором, как показано на рисунке 2.

В качестве источника питания можно использовать батарейки. Если в момент размыкания питающей цепи наблюдается вспышка лампы, то катушка исправна, короткозамкнутых витков нет. (Чтобы последовательность действий была понятней на рисунке 2 показан выключатель).

Подобные измерения можно проводить, используя в качестве батареек стрелочный авометр, такой как ТЛ-4 в режиме измерения сопротивления *1 Ом. В этом режиме указанный прибор дает ток около полутора миллиампер, что вполне достаточно для проведения описанных измерений. для этих целей использовать нельзя - его тока не хватает для создания необходимой силы магнитного поля.

Подобные измерения можно провести в точности также, если неоновую лампу заменить собственными пальцами: для повышения разрешающей способности «измерительного прибора» пальцы следует слегка послюнить. При исправной катушке Вы почувствуете достаточно сильный удар током, конечно не смертельный, но и не очень приятный.

Рисунок 2. Обнаружение короткозамкнутых витков с помощью неоновой лампы.