Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов , вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором , озоном и т. п., а также ионами тяжелых металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.

Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.

Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м 3 . К тому же существует опасность взрыва озоновоздушной смеси.

Следует отметить, что, хотя ряд зарубежных фирм предлагает автономные озонаторные установки для организации водоснабжения отдельного коттеджа или очистки воды в бассейне, кроме очень высокой стоимости таких устройств, требуется обеспечение их высококачественного обслуживания. Применение установки, предлагаемой одной из отечественных фирм, для автономного водоснабжения без всяких систем контроля содержания озона в воздухе и воде, может печально кончиться для ее владельцев. В этих условиях возможно применение дозирования в воду гипохлорита, получаемого в малогабаритном электролизере типа «Санатор», хотя и здесь требуется квалифицированное обслуживание.

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. о беззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщен ные йодом. При пропускании через них воды йод постепенно вымыва ется из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром , например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание воды ультрафиолетовыми лучами , бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. В ажно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания.

Основным недостатком метода является полное отсутствие последействия.

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззара­живание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Фактором, снижающим эффективность работы установок УФ-обез­зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Обеззараживание питьевой воды ультразвуком основано на способности его вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Из физических способов индивидуального обеззараживания воды наиболее распространенным и надежным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды . Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим
ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Достаточно новыми способами обеззараживания воды являются электрохимический и электроимпульсный. Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т. п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности. Кроме того, их используют для получения дезинфицирующих растворов – католита и анолита, применяемых в медицинской практике. Что касается заявлений разработчиков об изменении структуры воды и ее чудодейственных свойствах, оставим это без комментариев.

При электроимпульсном воздействии производится электрический разряд в воде – электрогидравлический удар, т. н. эффект Л. А. Юткина. При разряде возникает ударная волна сверхвысокого давления, световое излучение и образуется озон. Эти факторы губительно действуют на биологические объекты в воде.

Кипячение воды , т. е. нагревание ее до 100 0 С, приводит к безусловной гибели всех микроорганизмов, в том числе и патогенных. Кроме того, при кипячении могут разрушаться некоторые термолабильные токсины (ботулотоксин) и ядовитые вещества. В том числе и ОВ. Для большей гарантии в отношении термоустойчивых вирусов кипячение рекомендуют продолжать в течение 10-15 мин. Уничтожение споровых форм достигается увеличением срока кипячения до 2 часов. Такого же эффекта можно достичь нагреванием воды до 110-120 о С в течение 5-10 мин при избыточном давлении (автоклавирование).

Кипячение воды, как метод ее обеззараживания по сравнению с другими имеет ряд преимуществ. К их числу относятся простота, доступность и надежность обеззараживания, независимость бактерицидного эффекта от состава воды, отсутствие заметного влияния на физико-химические и органолептические свойства воды.

Наряду с преимуществами метод обеззараживания воды кипячением имеет и некоторые существенные недостатки: он экономически нерентабелен, требует большого количества топлива и сравнительно громоздкий из-за малопроизводительной аппаратуры в виде различного рода кипятильников. В связи с этим кипячение для целей обеззараживания больших количеств воды не применяется. При обработке небольших объемов воды он широко используется как в мирное, так и в военное время.

Метод обеззараживания воды ультрафиолетовыми лучами имеет важные преимущества, к числу которых относятся широкий антибактериальный спектр действия с выключением споровых и вирусных форм, исчисляемая несколькими секундами экспозиция, сохранение природных свойств воды, улучшение условий труда обслуживающего персонала в связи с исключением из обращения вредных химических веществ - дезинфектантов, экономическая рентабельность.

Установлено, что максимальное бактерицидное действие оказывает ультрафиолетовый участок спектра, в особенности лучи с длиной волны от 200 до 280 мм (область С).

Недостатком метода является отсутствие простого и быстрого способа контроля за полнотой обеззараживания воды, а также большое влияние физико-химических свойств воды (цветность, мутность, содержание железа и т.п.) на эффект обеззараживания.

4.6.2. Химические методы обеззараживания воды

Химические методы обеззараживания воды основаны на применении различных веществ, обладающих бактерицидным действием. Эти вещества должны отвечать определенным требованиям, а именно: не делать воду вредной для здоровья, не изменять ее органолептических свойств, в малых концентрациях и в течение короткого времени контакта оказывать надежное бактерицидное действие, быть удобными в применении и безопасными в обращении, длительно храниться, производство их должно быть дешевым и доступным.

В наибольшей степени этим требованиям отвечают хлор и его препараты, чем можно объяснить их распространение в практике коммунального и полевого водоснабжения.

Для обеззараживания воды применяются и другие вещества - озон, йод, перекись водорода, препараты серебра, органические и неорганические кислоты и некоторые другие.

Наряду с положительными свойствами, метод хлорирования имеет и недостатки. Основным из них является неспособность хлора и его препаратов в тех дозах, в которых они обычно применяются, уничтожать в воде споровые формы микроорганизмов. Для достижения этой цели прибегают к очень большим дозам хлора и длительному его контакту с водой. К недостаткам хлорирования следует отнести также трудность дозировки и опасность в обращении с хлором, нестойкость его препаратов при хранении, неприятный запах хлорированной воды, в особенности при наличии в ней химических веществ типа фенолов, а также возможность образования тригалометанов.

Эффективность хлорирования воды определяется свойствами хлорсодержащего препарата, концентрацией в нем активного хлора, физико-химическими свойствами воды и временем контакта с ней хлора, степенью обсеменения воды микроорганизмами и их видом.

Как считает большинство исследователей, для уничтожения подавляющего числа вегетативных форм микроорганизмов достаточно контакта хлора с водой в течение 30 мин.

Наиболее надежным способом контроля эффективности обеззараживания воды является бактериологическое исследование. Однако такие исследования длительны и сложны, особенно в полевых условиях и боевой обстановке. Контроль за полнотой обеззараживания осуществляется по остаточному хлору. Остаточный хлор состоит из свободного и связанного. Установлено, что, если в хлорированной воде через 30 мин после внесения туда определенного количества хлора осталось 0,3 ‑ 0,5 мг/л свободного остаточного хлора, вода, как правило, оказывается надежно обеззараженной.

Известно, что наряду со свободными формами хлора в реакцию вступает и учитывается связанный хлор, основу которого составляют хлорамины и дихлорамины. Их бактерицидное действие во много раз меньше, чем свободного хлора. Поэтому недостаточно знать лишь общее количество остаточного хлора. В каждом конкретном случае необходимо устанавливать его качественный состав, чтобы сделать правильное заключение о надежности проведенного обеззараживания воды. Согласно стандарту концентрация связанного (хлораминного) хлора после экспозиции не менее часа должна составлять 0,8 - 1,2 мг/л.

В случаях эпидемиологического неблагополучия величина остаточного хлора может быть повышена до 2 мг/л без ущерба для здоровья населения. По остаточному хлору устанавливается и хлорпотребность воды.

Основными способами хлорирования воды являются хлорирование нормальными дозами и хлорирование повышенными дозами (гиперхлорирование).

Хлорирование нормальными дозами наиболее распространено, особенно в практике коммунального водоснабжения. Сущность его заключается в выборе такой рабочей дозы активного хлора, которая после 60-минутного контакта с водой обеспечивает наличие 0,8 - 1,2 мг/л остаточного связанного хлора. К преимуществам метода относятся относительно небольшое влияние на органолептические свойства воды, что позволяет употреблять воду без последующего дехлорирования, малый расход хлора или хлорсодержащих препаратов. Недостатками метода является сложность выбора рабочей дозы хлора и возможность появления хлорфенольного запаха вследствие образования хлорфенолов в воде, содержащей даже очень незначительные количества кислоты или ее гомологов.

При хлорировании воды большими дозами хлора в нее вносится повышенное количество активного хлора в расчете на последующее дехлорирование. Доза активного хлора выбирается в зависимости от физических свойств воды (мутность, цветность), характера и степени благоустройства водоисточника и от эпидемической обстановки. В большинстве случаев она составляет 20 - 30 мг/л при времени контакта 30 мин.

К преимуществам метода относятся:

Надежный эффект обеззараживания даже мутных, окрашенных и вод, содержащих аммиак;

Упрощение техники хлорирования (не нужно определять хлорпотребность воды);

Снижение цветности воды за счет окисления хлором органических веществ и перевода их в неокрашенные соединения;

Устранение посторонних привкусов и запахов, особенно обусловленных присутствием сероводорода, а также разлагающихся веществ растительного и животного происхождения;

Отсутствие хлорфенольного запаха при наличии фенолов, так как при этом образуются не моно-, а полихлорфенолы, которые запахом не обладают;

Разрушение некоторых отравляющих веществ и токсинов (ботулотоксина); уничтожение споровых форм микроорганизмов при дозе 100 - 150 мг/л активного хлора и длительности контакта 2-5 ч, значительное улучшение условий для процесса коагуляции воды.

Перечисленные положительные стороны метода делают его весьма ценным для практики улучшения качества воды в полевых условиях, когда выбор водоисточников ограничен и возникает потребность использования воды низкого качества, особенно в связи с опасностью применения бактериологического и химического оружия.

К недостаткам метода, как уже указывалось, следует отнести возможность образования тригалометанов, особенно при хлорировании воды, содержащей хозяйственно-бытовые стоки и гуминовые вещества, повышенный расход хлора и необходимость дехлорирования воды.

В качестве средств дехлорирования используются химические вещества, связывающие избыточное количество хлора, и сорбция хлора на активированном угле. Химические вещества, переводящие хлор в неактивное состояние, обычно относятся к группе восстановителей. Лучшим из них является тиосульфат (гипосульфит) натрия.

Дехлорирование воды может производиться сернистокислым и сернистым ангидридом, а также фильтрованием через обычный или активный уголь. Небольшие количества воды можно дехлорировать путем внесения угольного порошка в воду.

Применяемая для обеззараживания воды перекись водорода (Н 2 О 2) также является сильным окислителем. Акцептором служит атомарный кислород. Из-за трудности получения в больших количествах и дороговизны перекись водорода широкого применения в практике водоснабжения не приобрела. В последнее время разработан новый, более дешевый способ ее получения, в связи с чем, метод этот приобретает практический интерес.

Перекись водорода не изменяет органолептических свойств воды и значительно (до 50 %) снижает ее цветность, что весьма ценно для обеззараживания окрашенных вод. К числу недостатков метода относятся необходимость введения катализаторов для ускорения высвобождения атомарного кислорода и жидкая форма препарата, что затрудняет ее применение в полевых условиях.

Обеззараживание воды серебром основано на том, что ионы этого металла инактивируют бактериальные ферменты, блокируя их сульфгидрильные группы. Практически метод обеззараживания серебром может быть применен при небольших индивидуально-групповых запасах воды. Для этой цели используют посеребренный песок, посеребренные керамические «кольца Рашига» и серебро, растворенное электролитическим путем, т.е. растворенный при пропускании постоянного тока через обеззараживаемую воду серебряный электрод (анод). Таким путем можно получить «серебрянную воду», обладающую бактерицидными свойствами. Возможно также обеззараживание воды добавлением солей серебра.

Обеззараживание воды серебром не изменяет ее органолептических свойств и обеспечивает длительность бактерицидного действия, что особенно важно в тех случаях, когда возникает необходимость в длительном хранении воды.

К недостаткам метода следует отнести трудность дозировки, медленное и ненадежное бактерицидное действие, влияние на бактерицидный эффект физико-химических свойств воды, а также необходимость контроля остаточных количеств серебра в питьевой воде.

Дезинфекция и обеззараживание воды - это один и тот же процесс. Он направлен на полное или частичное уничтожение содержащихся в жидкости вирусов, бактерий, очищение ее от пыли, мусора и проч. Цель мероприятия - защитить человека от вирусных и инфекционных заболеваний, пищевых отравлений, глистной инвазии. В статье мы познакомим вас с несколькими способами обеззараживания воды - традиционными и инновационными, промышленными и пригодными для применения в полевых условиях.

Методы очистки

Прежде всего, отметим факт, что полное очищение от всех содержащихся в ней элементов (в том числе и бактерий) сделает жидкость полностью непригодной для питья и приготовления пищи. Оттого нужно с толком выбирать способ обеззараживания воды, быть уверенными в его качественном воплощении.

Дезинфекции всегда должно предшествовать химико-биологическое исследование жидкости. Уже на основе его результатов выбирают один из методов обеззараживания:

  • Химический, реагентный.
  • Комбинированный.
  • Безреагентный, физический.

Каждый из них - это способ обеззараживания воды, но по собственной определенной методике. Например, химический - это воздействие с помощью реагентов-коагулянтов, физические методы - безреагентное воздействие. Выделяются еще и инновационные, которые мы обязательно разберем на протяжении материала.

Интересно применение комбинированных методов - это применение и физического, и химического очищения попеременно. Считается на сегодня самым эффективным в дезинфекции - не только позволяет избавиться от бактерий, но и помогает не допустить их повторного визита. Применение нескольких способов обеззараживания воды - это и гарантия ее очистки от максимального количества загрязнителей.

Химические способы

В частности, это обработка жидкости различными веществами - химическими коагулянтами. Наиболее распространены:

  • хлор;
  • озон;
  • гипохлорит натрия;
  • ионы металлов и проч.

Эффективность этих способов обеззараживания питьевой воды зависит от максимально точно определенной дозы воздействующего реагента, от должного времени его контакта с очищаемой жидкостью.

Подходящую дозировку определяют как системой расчетов, так и пробной дезинфекцией, после которой воду берут на анализ. Важно не просчитаться и в том плане, что малая доза химических реагентов не только бессильна против вирусов и инфекций, но и может поспособствовать повышению их активности. Например, тот же озон в небольших количествах убивает лишь часть бактерий, выделяя особые соединения, что пробуждают спящие микроорганизмы, стимулируя их на ускоренное размножение.

Отсюда дозу всегда рассчитывают с избытком. Но одно дело - способы а другое дело - питьевых. Избыток должен в последнем случае быть таким, чтобы не вызвать у употребляющих жидкость людей отравление дезинфицирующими веществами.

Предлагаем вам подробнее ознакомиться с химической методикой.

Хлорирование

Если попросить обывателей: "Укажите самый простой способ обеззараживания воды", многие сразу же отметят хлорирование. И неспроста - как метод дезинфекции оно очень распространено в России. Объясняется это несомненными плюсами хлорирования:

  • Простота в использовании и обслуживании.
  • Низкая цена действующего вещества.
  • Высокая эффективность.
  • Последующий после применения эффект - вторичный рост микроорганизмов не происходит даже при минимальном избытке дозы хлора.
  • Контроль за запахом, вкусовыми качествами воды.
  • Поддержка чистоты фильтров.
  • Препятствие образованию водорослей.
  • Разрушение сероводорода, удаление железа и марганца.

Однако у средства есть и свои минусы:

  • При окислении обладает высокой степенью токсичности, мутагенности, канцерогенности.
  • Последующая после хлора очистка жидкости активированным углем не спасает ее полностью от образованных хлорированием соединений. Высокостойкие, они могут сделать питьевую воду непригодной для питья, засорять реки и иные природные водоемы по течению стоков.
  • Образование тригалометанов, оказывающих канцерогенное воздействие на человеческий организм. Именно они способствуют росту раковых клеток. А кипячение, самый простой способ обеззараживания воды, усугубляет ситуацию. В хлорированной жидкости после него образуется диоксин - опасное ядовитое вещество.
  • Исследования показывают, что хлорированная вода способствует также развитию заболеваний сосудов, ЖКТ, печени, сердца, гипертонии, атеросклероза. Негативно сказывается на состоянии кожи, волос и ногтей. Разрушает в организме белок.

На сегодня современной заменой является более эффективный в обеззараживании. Но существенный минус - его нужно применять сразу на месте производства.

Озонирование

Многие считают самым надежным способом обеззараживания воды именно озонирование. Газ озон способен разрушать ферментную систему микробной, вирусной клетки, окислять некоторые соединения, придающие жидкости неприятный запах.

Достоинства метода следующие:

  • Быстрая дезинфекция.
  • Максимально безопасное для человека и окружающей среды обеззараживание.

При этом у озонирования есть и ряд недостатков:

  • При неправильной дозировке у воды отмечается неприятный запах.
  • Избыток озона способствует усиленной коррозии металла. Это касается и водопроводных труб, и бытовой техники, посуды. Нужно выждать период распада газа, прежде чем пускать воду по трубам.
  • Довольно дорогой в применении метод - необходимы большие растраты электроэнергии, сложное оборудование, высококвалифицированный обслуживающий персонал.
  • Газ в процессе производства токсичен и взрывоопасен. Относится к первому классу опасности.
  • После проведения озонирования возможно повторное размножение бактерий. Нет гарантии 100 % очистки воды.

Полимерные антисептики

Еще один популярный химический способ - использование полимерных реагентов. Самым известным на сегодня является "Биопаг". Чаще всего его применяют в общественных бассейнах, аквапарках.

Достоинства этого способа очистки и обеззараживания воды:

  • Не наносит вреда здоровью человека и животных.
  • Не придает воде определенный запах, вкус или цвет.
  • Довольно прост в использовании.
  • Не оказывает коррозионного влияния на металл.
  • Не вызывает аллергических реакций.

Недостатки - может раздражать кожу, слизистую оболочку.

Прочие химические способы

Какие способы обеззараживания воды можно назвать в данном случае? Это несколько вариантов:

  • Дезинфекция при помощи ионов тяжелых металлов, йода, брома.
  • Обеззараживание при помощи ионов благородных металлов. Чаще всего используется серебро.
  • Использование сильных окислителей. Частым примером тут будет гипохлорит натрия.

Физические способы

Сюда будут относиться нехимические способы воздействия на микроорганизмы в жидкости. Их применению чаще всего предшествует фильтрация и Это удаляет взвешенные частицы, яйца глистов, внушительную часть находящихся в жидкости микробов.

Самые распространенные способы:

  • Воздействие ультрафиолетового излучения.
  • Воздействие ультразвука.
  • Кипячение. Эффективный способ обеззараживания воды в природных условиях.

Давайте разберем каждый из них более подробно.

УФ-облучение

Важно рассчитать необходимую долю воздействующей энергии на определенный объем воды. Для этого перемножают мощность излучения и время контакта с жидкостью. Важно предварительно определить концентрацию микроорганизмов в 1 мл воды, число индикаторных бактерий (в частности, кишечной палочки).

Отметим, что УФ-лучи будут пагубно воздействовать на микроорганизмы лучше хлора. Озон же по результатам очистки будет равен по эффективности облучению. УФ-лучи воздействуют и на ферментный обмен, и на клеточные структуры бактерий и вирусов. Что важно, уничтожают вегетативные,споровые формы.

Достоинства метода такие:

  • Нет верхнего порога дозы, так как подобное облучение не образует в воде токсических соединений. Увеличивая ее, можно постепенно добиться самых лучших результатов.
  • Отлично подходит для индивидуального пользования.
  • Большой срок службы УФ-лампы - несколько тысяч часов.

Но есть и недостатки:

  • Нет последствия мероприятия - чтобы воспрепятствовать возвращению микроорганизмов, воду следует обеззараживать периодически и систематически, не выключая установку.
  • Кварцевые лампы порой загрязняются отложениями минеральных солей. Однако этому легко воспрепятствовать с помощью обычной пищевой кислоты.
  • Обязательна предварительная очистка воды от взвешенных в ней частиц - экранизируя лучи, они сводят "на нет" весь процесс.

Способ обеззараживания воды в полевых условиях с помощью УФ-излучения продемонстрирован на картинке.

Ультразвук

Действие тут основано на кавитации. Так называется способность ряда звуковых частот образовать пустоты, создающие большую разницу в давлении.Этот диссонанс приводит к разрыву клеточных оболочек вирусов, бактерий, что ведет к гибели микроорганизмов. Эффективность зависит от интенсивности колебаний звука.

Такой метод мало распространен в первую очередь из-за своей дороговизны. Необходимо определенное оборудование, специально подготовленный персонал. Важно помнить о том, что опасен ультразвук для бактерий только на определенных частотах. Низкие волны, напротив, способны вызвать ускорение роста числа микроорганизмов в воде.

Кипячение

Самый простой и распространенный способ обеззараживания воды в полевых условиях - это, конечно, кипячение. Его популярность и общепризнанность основывается на многих факторах:

  • Уничтожение в жидкости практически всех вредоносных микроорганизмов - вирусов, бактерий и бактериофагов, антибиотиков и проч.
  • Доступность - нужен источник тепла, способный разогреть воду до 100 градусов по Цельсию, и жаропрочная емкость.
  • Не влияет на вкусовые качества жидкости, ее цвет и запах.
  • Устраняет растворенные в воде газы.
  • Отлично борется с жесткостью жидкости, смягчает ее.

Комплексные способы очистки

От простых способов обеззараживания воды перейдем к комплексным, что являются самыми эффективными в ряде случаев. Например, это сочетание УФ-облучения и хлорирования, озонирования и хлорирования (препятствие вторичному заражению), безреагентные и реагентные методы.

В эту же категорию часто относят и фильтрование. Но с той особенностью, что каждая ячейка фильтра по размерам должна быть меньше, чем отсеиваемые микроорганизмы. А это значит, что ее диаметр не должен превышать 1 микрон. Но таким образом можно бороться только с бактериями. Против вирусов применяют более микроскопические поры - с диаметром менее 0,1-0,2 мкм.

На современном рынке популярна система фильтрации под названием "Пурифайер". Устройство отличается тем, что использует несколько систем фильтрации воды, ее обеззараживания. Некоторые модели дополнительно могут охлаждать воду до 4 градусов и нагревать до 95 градусов.

Установка применима и в промышленных, и в офисных, домашних масштабах. К водопроводной трубе ее достаточно просто подсоединить пластиковым переходником. Производители уверяют, что приобретение, подключение и работа "Пурифайера" будет обходиться владельцу дешевле, нежели доставка бутилированной воды.

Инновационные методы обеззараживания

Самыми новыми на сегодня способами обеззараживания воды будут электрохимический и электроимпульсный. На отечественном рынке они используются в таких устройствах, как "Изумруд", "Сапфир", "Аквамарин".

Их функционирование основано на работе специального электрохимического диафрагменного реактора, через который и пропускается вода. Он, в свою очередь, разделен металлокерамической мембраной, что способна производить ультрафильтрацию на катодные и анодные зоны.

В момент, когда в анодные и катодные камеры подают ток, в них начинают образовываться растворы - щелочной и кислотный. Затем - электролитическое образование (другое его название - активный хлор). Вся эта среда отличительна тем, что в ней активно гибнет подавляющее число видов вредных микроорганизмов. Также она способна разрушать некоторые соединения, растворенные в жидкости.

Производительность представленных аппаратов главным образом зависит от двух факторов: количества рабочих элементов и их конструкции. В каких-то агрегатах используются католиты и анолиты (в основном в медицинской сфере). Подобное обеззараживание называется ЭХА-технологией.

С ней, кстати, связаны многие заблуждения. Некоторые производители устройств заявляют, что обработанная в их агрегате вода становится целебной и даже чудодейственной. Однако на деле она всего лишь очищается и обеззараживается.

Электроимпульсная же очистка - это пропускание через толщу воды электроразряда. Ударная волна сверхвысокого давления, световое излучение, образование озона - следствие воздействия. Это все вместе губительно для микроорганизмов, взвешенных в жидкости.

Мы познакомились с разными методами обеззараживания воды - простыми и комплексными, традиционными и инновационными, эффективными и безопасными для человека. Каждый из них имеет свои достоинства и недостатки. Однако ведущий фактор - безвредность для организма человека, окружающей среды.

Дезинфекция, хлорирование воды в домашних (походных) условиях. Обеззараживание. Реактивы, пропорции, количество

Как дезинфицировать воду с помощью хлора на даче, дома или в походе. Хлорируем воду своими руками. Сколько нужно хлора? (10+)

Как хлорировать воду своими руками

При использовании воды из природных источников ее необходимо обеззаразить (удалить из нее бактерии, вирусы и органические вещества). В наш век антибиотиков заражение пищевой инфекцией не является приговором, как это было двести лет назад, но в любом случае ничего приятного в такой инфекции нет.

Существует несколько способов дезинфекции:

  • Кипячение,
  • Специальные фильтры (дезинфицирующие или обратный осмос - не пропускающий бактерии, вирусы и большие органические молекулы),
  • Озонирование (подробнее о самодельном озонаторе),
  • Дезинфицирующие таблетки,
  • Хлорирование

Преимущества и недостатки хлорирования, как метода дезинфекции

Здесь мы остановимся на хлорировании (обработке воды хлором или хлорсодержащими соединениями). Преимуществом хлорирования является сохранение в воде остаточного хлора, что предотвращает ее порчу (зацветание, появление неприятных запахов, помутнение) в течение довольно длительного времени. Основной недостаток - продолжение преимущества - остаточный хлор попадает в организм, а хлор ядовит. Однако, в правильной концентрации остаточных хлор считается безопасным. В любом случае большинство из нас и так потребляет хлорированную из водопровода. Кроме того, перед употреблением воду довольно просто дехлорировать.

Реактивы для хлорирования

Для хлорирования я применяю гипохлорит натрия, а точнее жидкость для отбеливания "Белизна". Несмотря на громкое название "Отбеливатель", эта жидкость содержит только водный раствор гипохлорита натрия. В ней нет ничего больше, что нас вполне устраивает. Внимание! "Белизна" в неразбавленном виде довольно опасна. При работе с ней Нужно надеть очки и перчатки.

По государственным стандартам для хлорирования воды из открытых наземных источников необходимо добавлять хлорирующее вещество из расчета 1 - 3 мг активного хлора на 1 литр воды. В 4%-й Белизне 20 - 50 г/л активного хлора. Таким образом на литр воды нужно добавлять около 0.075 мл Белизны. Проще считать так. На 20 литров воды нужно добавить 1.5 мл Белизны.

На даче

У нас на даче воду подают через летний водопровод из озера без всякой подготовки. Она пригодна только для полива. Для бытовых нужд (мытья посуды, рук, чистки зубов, приготовления пищи) я ее хлорирую, наполняю 200 литровую бочку, добавляю 15 мл Белизны. Делаю это так. Сначала наливаю в бочку 100 литров, потом с помощью мерного стаканчика добавляю отбеливатель, потом наливаю еще 100 литров. Это позволяет хорошо перемешать полученную смесь. Далее вода выдерживается несколько часов. После этого вода готова к использованию для мытья рук и посуды, чистки зубов. Перед приготовлением пищи я пропускаю эту воду через бытовой фильтр с угольным картриджем, поглощающим хлор и другие вредные соединения.

В походе

В походных условиях воду из реки или озера набираем в емкость. Я беру двухлитровую пластиковую бутылку. К воду добавляю "Белизну". Нужно добавить 0.15 мл. Удобнее всего это сделать с помощью инсулинового шприца 100 ЕД / мл. В такой шприц нужно набрать 15 ЕД (по шкале не нем). Это и будет 0.15 мл. Если вода имеет совсем неприглядный вид, то можно добавить несколько больше, например, 0.2 мл. Далее вода в бутылке тщательно перемешивается (встряхиванием) и выдерживается в течение двух часов. После этого воду можно отфильтровать, чтобы удалить из нее остаточный хлор и окисленные остатки микроорганизмом и других органических веществ. Фильтровать можно в обычном бытовом фильтре для воды. Есть и походные варианты фильтра. По составу фильтрующего элемента они ничем не отличаются от бытовых, но форма более приспособлена для переноски такого фильтра в рюкзаке.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Почему пригорает картошка? Как пожарить картофель без пригара? Подгора...
Оказывается, пожарить картошку так, чтобы она не пригорела, но была золотистого...

Как очистить воду для автономного водопровода? Фильтрация и умягчение....
Как подготовить воду для водопровода. Очистка от грязи, жесткости, примесей желе...

Ледоходы, ледоступы, шипы на обувь, цепи на ботинки и сапоги - отзыв, ...
Приспособления для хождения по льду. Как правильно выбрать и купить. Что делать,...

Пищевая соль и здоровье. Суточная норма соли....
Роль поваренной соли в здоровом питании. Суточная норма потребления. Отличия мор...

Отделка вагонки. Шпатлевка, окраска, лакировка....
Как правильно красить вагонку? Чем и как ее шпатлевать? Мой практический опыт и...

Костюм бизнес - стиля для куклы барби - пиджак, брюки. Схема вязания д...
Свяжем кукле пиджак к деловому костюму. Схема....

Чем смыть, удалить акриловую, алкидную, латексную краску, грунтовку, г...
Поверхность покрыта старой краской и грунтовкой. Кое-где она отслаивается, облуп...

Повесим картину, зеркало, полку, вешалку. Закрепим, прибьем сами, свои...
Как самому повесить на стену картину, зеркало, полку, вешалку или что-то еще? На...


Вода является неотъемлемой часть нашей жизни. Ежедневно мы выпиваем определенный объем и часто даже не задумываемся о том, что обеззараживание воды и ее качество важная тема. А зря, тяжелые металлы, химические соединения и болезнетворные бактерии способны вызвать необратимые изменения в человеческом организме. На сегодняшний день гигиене воды уделяется серьезное внимание. Современные методы обеззараживания питьевой воды способны очистить ее от бактерий, грибков, вирусов. Они придут на помощь и в том случае, если вода плохо пахнет, имеет посторонние привкусы, цветность.

Предпочтительные методы повышения качества выбирают в зависимости от содержащихся в воде микроорганизмов, уровня загрязненности, источника водоснабжения и других факторов. Обеззараживание направлено на удаление болезнетворных бактерий, которые разрушающе влияют на организм человека.

Очищенная вода прозрачна, не имеет посторонних привкусов и запахов, а также абсолютно безопасна. На практике для борьбы с вредными микроорганизмами применяют способы двух групп, а также их комбинацию:

  • химические;
  • физические;
  • комбинированные.

Для того, чтобы выбрать эффективные методы дезинфекции необходимо провести анализ жидкости. Среди проводимых анализов выделяют:

  • химический;
  • бактериологический;

Применение химического анализа позволяет определить содержание в воде различных химических элементов: нитратов, сульфатов, хлоридов, фторидов и т.д. Все же показатели, анализируемые данным методом, можно подразделить на 4 группы:

  1. Органолептические показатели. Химический анализ воды позволяет определить ее вкус, запах и цвет.
  2. Интегральные показатели – плотность, кислотность и жесткость воды.
  3. Неорганические – различные металлы, содержащиеся в воде.
  4. Органические показатели – содержание в воде веществ, которые могут изменяться под воздействием окислителей.

Бактериологический анализ направлен на выявление различных микроорганизмов: бактерий, вирусов, грибков. Подобный анализ выявляет источник заражения и помогает определить методы обеззараживания.

Химические методы обеззараживания питьевой воды

Химические способы основаны на добавлении в воду различных реагентов-окислителей, которые убивают вредоносные бактерии. Наибольшую популярность среди таких веществ получили хлор, озон, гипохлорит натрия, диоксид хлора.

Для достижения высокого качества важно правильно рассчитать дозу реагента. Малое количество вещества может не возыметь эффекта, а даже наоборот способствовать увеличению числа бактерий. Реагент необходимо вводить с избытком, это позволит уничтожить как имеющиеся микроорганизмы, так и бактерии, попавшие в воду после обеззараживания.

Избыток нужно рассчитывать очень аккуратно, чтобы он не мог нанести вред людям. Наиболее популярные химические методы:

  • хлорирование;
  • озонирование;
  • олигодинамия;
  • полимерные реагенты;
  • иодирование;
  • бромирование.

Хлорирование

Очистка воды хлорированием является традиционным и одним из самых популярных способов очищения воды. Хлорсодержащие вещества активно используют для очистки питьевой воды, воды в бассейнах, дезинфекции помещений.

Свою популярность данный способ приобрел благодаря простоте использования, низкой стоимости, высокой эффективности. Большинство патогенных микроорганизмов, вызывающих различные заболевания, не устойчивы к хлору, который оказывает бактерицидное действие.

Для создания неблагоприятных условий, препятствующих размножению и развитию микроорганизмов, достаточно ввести хлор в небольшом избытке. Избыток хлора способствуют продлению эффекта обеззараживания.

В процессе обработки воды возможны следующие способы хлорирования: предварительное и конечное. Предварительное хлорирование применяют максимально близко к месту забора воды, на данном этапе использование хлора не только обеззараживают воду, но и способствуют удалению ряда химических элементов, в том числе железа и марганца. Конечное хлорирование – последний этап в процессе обработки, во время которого происходит уничтожение вредоносных микроорганизмов посредством хлора.

Также различают нормальное хлорирование и перехлорирование. Нормальное хлорирование применяют для дезинфекции жидкости из источников с хорошим санитарными показателями. Перехлорирование – в случае сильной зараженности воды, а также если она заражена фенолами, которые в случае нормального хлорирования только усугубляют состояние воды. Остатки хлора в таком случаем удаляют дехлорированием.

Хлорирование, как и другие методы, наряду с достоинствами имеет и свои минусы. Попадая в организм человека в избытке, хлор ведет к проблемам с почками, печенью, ЖКТ. Высокая коррозионная активность хлора влечет быстрый износ оборудования. В процессе хлорирования образуются всевозможные побочные продукты. Например, тригалометаны (соединения хлора с веществами органического происхождения), способны вызвать симптомы астмы.

В силу широты применения хлорирования у ряда микроорганизмов сформировалась устойчивость к хлору, поэтому определенный процент заражения воды все же возможен.

Для дезинфекции воды чаще всего используют газообразный хлор, хлорную известь, диоксид хлора и гипохлорит натрия.

Хлор – самый популярный реагент. Используют его в жидком и газообразном виде. Уничтожая болезнетворную микрофлору, устраняет неприятный вкус и запах. Предотвращает рост водорослей и ведет к улучшению качества жидкости.

Для очищения хлором используют хлораторы, в которых газообразный хлор абсорбируют с водой, а далее полученную жидкость доставляют до места применения. Несмотря на популярность данного метода, он является довольно опасным. Транспортировка и хранение высокотоксичного хлора обязывает к соблюдению техники безопасности.

Хлорная известь – вещество, получаемое под воздействием газообразного хлора на сухую гашеную известь. Для обеззараживания жидкости применяют хлорную известь, процент хлора в которой составляет не менее 32-35%. Данный реагент очень опасен для человека, вызывает сложности при производстве. В силу этих и других факторов хлорная известь теряет свою популярность.

Диоксид хлора оказывает бактерицидное воздействие, практически не загрязняет воду. В отличие от хлора не образует тригалометанов. Основная причина, которая тормозит его использование – высокая взрывоопасность, что затрудняет производство, транспортировку и хранение. В настоящее время освоена технология производства на месте применения. Уничтожает все виды микроорганизмов. К недостаткам можно отнести способность образовывать вторичные соединения – хлораты и хлориты.

Гипохлорит натрия применяют в жидком виде. Процент активного хлора в нем в два раза больше, чем в хлорной извести. В отличие от диоксида титана обладает относительной безопасностью при хранении и использовании. Ряд бактерий устойчив к его воздействию. В случае длительного хранения теряет свои свойства. На рынке присутствует в виде жидкого раствора с различным содержанием хлора.

Стоит отметить, что все хлорсодержащие реагенты обладают высокой коррозионной активностью, в связи с чем их не рекомендуется использовать для очищения воды, поступающей в воду через металлические трубопроводы.

Озонирование

Озон, так же как и хлор, является сильным окислителем. Проникая сквозь оболочки микроорганизмов, он разрушает стенки клетки и убивает ее. как с обеззараживанием воды, так и с ее обесцвечиванием и дезодорированные. Способен окислять железо и марганец.

Обладая высоким антисептическим действием, озон разрушает вредные микроорганизмы в сотни раз быстрее, чем другие реагенты. В отличие от хлора, уничтожает практически все известные виды микроорганизмов.

При распаде реагент преобразуется в кислород, который насыщает организм человека на клеточном уровне. Быстрый распад озона в то же время является и недостатком данного метода, поскольку уже через 15-20 мин. после процедуры, вода может подвергнуться повторному заражению. Существует теория, согласно которой при воздействии озона на воду, начинается разложение фенольных групп гуминовых веществ. Они активируют организмы, который до момента обработки находились в спячке.

Насыщаясь озоном вода становится коррозионно-активной. Это ведет к повреждению труб водопровода, сантехники, бытовой техники. В случае ошибочного количества озона возможно образование побочных элементов, которые обладают высокой токсичностью.

Озонирование имеет и другие минусы, к которым стоит отнести высокую стоимость покупки и установки, большие электрозатраты, а также высокий класс опасности озона. При работе с реагентом необходимо соблюдать осторожность и технику безопасности.

Озонирование воды возможно с помощью системы, состоящей из:

  • озоногенератора, в котором происходит процесс выделения озона из кислорода;
  • системы, которая позволяет ввести озон в воду и смешать его с жидкостью;
  • реактора – емкости, в которой происходит взаимодействие озона с водой;
  • деструктора – устройства, которое удаляет остаточный озон, а также приборов, контролирующих озон в воде и воздухе.

Олигодинамия

Олигодинамия – обеззараживание воды посредством воздействия на нее благородных металлов. Наиболее изучено применение золота, серебра и меди.

Самым же популярным металлом в целях уничтожения вредных микроорганизмов является серебро. Его свойства раскрыли еще в древности, в емкость с водой помещали ложку или монетку из серебра и давали такой воде отстояться. Утверждение, что такой метод эффективен довольно спорное.

Теории влияния серебра на микробы не получили окончательного подтверждения. Существует гипотеза, согласно которой клетку разрушают электростатические силы, возникающие между ионами серебра с положительным зарядом и отрицательно заряженными клетками бактерий.

Серебро – тяжелый металл, который в случае накопления в организме может вызывать ряд заболеваний. Достичь антисептического эффекта можно лишь при высоких концентрациях данного металла, которое губительно для организма. Меньшее количество серебра способно только приостановить рост бактерий.

К тому же, практически не чувствительные к серебру спорообразующие бактерии, не доказано его влияние на вирусы. Поэтому применение серебра целесообразно лишь для продления сроков хранения изначально чистой воды.

Другим тяжелым металлом, способным оказывать бактерицидное воздействие, является медь. Еще в древности заметили, что вода, которая стояла в медных сосудах, гораздо дольше сохраняла свои высоковеществ. На практике данный метод используют в основных в бытовых условиях для очищения небольшого объема воды.

Полимерные реагенты

Использование полимерных реагентов – современный метод обеззараживания воды. Он значительно выигрывает у хлорирования и озонирования за счет своей безопасности. Жидкость, очищенная полимерными антисептиками не имеет вкуса и посторонних запахов, не вызывает коррозию металла, не воздействует на организм человека. Данный метод получил распространение в очистке воды в бассейнах. Вода, очищенная полимерным реагентом, не имеет цвета, постороннего вкуса и запаха.

Иодирование и бромирование

Иодирование – метод обеззараживания, использующий иодсодержащие соединения. Дезинфицирующие свойства йода известны медицине с давних времен. Несмотря на то, что данный метод широко известен и неоднократно предпринимались попытки его использования, использование йода в качестве дезинфектора воды популярности не приобрело. Данный метод имеет существенный недостаток, растворяясь в воде, он вызывает специфический запах.

Бром – довольно эффективный реагент, который уничтожает большую часть известных бактерий. Однако, в силу своей высокой стоимости популярностью не пользуется.

Физические методы обеззараживания воды

Физические способы очистки и дезинфекции работают воду без использования реагентов и вмешательства в химический состав. Наиболее популярные физические методы:

  • УФ-облучение;
  • ультразвуковое воздействие;
  • термическая обработка;
  • электроимпульсный способ;

УФ-излучение

Все большую популярность среди методов обеззараживания воды набирает применение УФ-излучения. В основе методики лежит тот факт, что лучи, длина волны у которых 200-295 нм, могут убивать патогенные микроорганизмы. Проникая сквозь клеточную стенку, они воздействуют на нуклеиновые кислоты (РНД и ДНК), а также вызывают нарушения в структуре мембран и клеточных стенок микроорганизмов, что ведет к гибели бактерий.

Для определения дозы излучения необходимо провести бактериологический анализ воды, это позволит выявить виды патогенных микроорганизмов и их восприимчивость к лучам. На эффективность также влияет мощность используемой лампы и уровень поглощения излучения водой.

Доза УФ-излучения равна произведению интенсивности излучения на его продолжительность. Чем выше устойчивость микроорганизмов, тем дольше на них необходимо воздействовать

УФ-излучение не влияет на химический состав воды, не образует побочных соединений, таким образом исключает возможность нанесения вреда человеку.

При использовании данного метода невозможна передозировка, УФ-облучение отличается высокой скоростью реакции, для обеззараживания всего объема жидкости требуется несколько секунд. Не меняя состав воды, излучение способно уничтожить все известные микроорганизмы.

Однако, не лишен данный метод и недостатков. В отличие от хлорирования, обладающего пролонгирующим эффектом, эффективность облучения сохраняется до тех пор, пока лучи воздействуют на воду.

Хороший результат достижим лишь в очищенной воде. На уровень поглощения ультрафиолета влияют содержащиеся в воду примеси. Например, железо способно служить для бактерий своеобразным щитом и «прятать» их от воздействия лучей. Поэтому целесообразно провести предварительную очистку воды.

Система для УФ-излучения состоит из нескольких элементов: выполненной из нержавеющей стали камеры, в которую помещена лампа, защищенная кварцевыми чехлами. Проходя через механизм такой установки, вода постоянно подвергается действию ультрафиолета и полному обеззараживанию.

Ультразвуковое обеззараживание

Ультразвуковое обеззараживание основано на методе кавитации. За счет того, что под воздействием ультразвука происходят резкие перепады давления, микроорганизмы разрушаются. Эффективен ультразвук и для борьбы с водорослями

Данный метод имеет узкий круг использования и находится на стадии освоения. Преимуществом является нечувствительность к высокой мутности и цветности воды, а также возможность воздействовать на большинство форм микроорганизмов.

К сожалению, данный метод применим только для малых объемов воды. Как и УФ-облучение оказывает эффект только в процессе взаимодействия с водой. Не возымело ультразвуковое обеззараживание популярности и в силу необходимости установки сложного и дорого оборудования.

Термическая обработка воды

В домашних условиях термический способ очистки воды – всем известное кипячение. Высокая температура убивает большинство микроорганизмов. В промышленных условиях данный метод неэффективен в силу его громоздкости, больших временных затрат и низкой интенсивности. К тому же, термическая обработка не способна избавить от посторонних привкусов и болезнетворных спор.

Электроимпульсный способ

В основе электроимпульсного способа лежит применение электрических разрядов, которые формируют ударную волну. Под воздействием гидравлического удара микроорганизмы гибнут. Данный метод эффективен как для вегетативных, так и спорообразующих бактерий. Способен достичь результата даже в мутной воде. Кроме того, бактерицидные свойства обработанной воды сохраняются до четырех месяцев.

Минусом является высокая энергоемкость и дороговизна.

Комбинированные методы обеззараживания воды

Для достижения наибольшего эффекта используют комбинированные способы, как правило, реагентные методы сочетают с безреагентными.

Высокую популярность возымело сочетание УФ-облучения с хлорированием. Так, уф-лучи убивают патогенную микрофлору, а хлор препятствует повторному заражению. Данный метод используют как для очистки питьевой воды, так и очистки воды в бассейнах.

Для обеззараживания бассейнов УФ-излучение преимущественно используют с гипохлоритом натрия.

Заменить хлорирование на первом этапе можно озонированием

Другие методы включает в себя окисление в сочетании с тяжелыми металлами. Окислителями могут выступать как хлорсодержащие элементы, так и озон. Суть комбинирования состоит в том, что окислители обивают вредные микробы, а тяжелые металлы позволяют сохранить воду обеззараженной. Существуют и другие способы комплексной дезинфекции воды.

Очистка и обеззараживание воды в бытовых условиях

Часто необходимо очистить воду в небольших количествах прямо здесь и сейчас. Для этих целей используют:

  • растворимые обеззараживающие таблетки;
  • перманганат калия;
  • кремний;
  • подручные цветы, травы.

Обеззараживающие таблетки могут выручить в походных условиях. Как правило, одну таблетку применяют на 1 л. воды. Этот метод можно отнести к химической группе. Чаще всего в основе таких таблеток лежит активный хлор. Время действия таблетки 15-20 минут. В случае сильного загрязнения количество можно удвоить.

Если вдруг таблеток не оказалось, возможно применение обычной марганцовки из расчета 1-2 г. на ведро воды. После того, как вода отстоится, она готова к использованию.

Также бактерицидное действие оказывают природные растения – ромашку, чистотел, зверобой, бруснику.

Еще один реагент – кремний. Поместите его в воду и дайте ей отстояться в течение суток.

Источники водоснабжения их пригодность для обеззараживания

Источники водоснабжения можно разделить на два вида – поверхностные и подземные воды. К первой группе относится вода из рек и озер, морей и водохранилищ.

При анализе пригодности вод для питья, расположенных на поверхности, проводят бактериологический и химический анализ, оценивают состояние дна, температуру, плотность и соленость морской воды, радиоактивность воды и т.д. Немаловажную роль при выбора источника играет нахождение по близости промышленных объектов. Еще один этап оценки источника водозабора – просчет возможных рисков заражения воды.

Состав воды в открытых водоемах зависит от времени года, такая вода содержит различные загрязнения, среди которых и болезнетворные микроорганизмы. Наиболее высок риск заражения водоемов рядом с городами, заводами, фабриками и другими объектами промышленности.

Речная вода очень мутная, отличается цветностью и жесткостью, а также большим количеством микроорганизмов, заражение которыми чаще всего происходит из стоковых вод. В воде из озер и водохранилищ часто встречается цветение из-за развития водорослей. Также такие воды

Особенность поверхностных источников заключается в большой водной поверхности, которая соприкасается с солнечными лучами. С одной стороны, это способствует самоочищению воды, с другой – служит развитию флоры и фауны.

Несмотря на то, что поверхностные воды могу самоочищаться, это не спасает их от механических примесей, также патогенной микрофлоры, поэтому при водозаборе подвергаются тщательному очищению с дальнейшим обеззараживанием.

Другой вид источников водозабора – подземные воды. Содержание микроорганизмов в них минимально. Для обеспечения населения лучше всего подходит родниковая и артезианская вода. Чтобы определить их качество, эксперты анализируют гидрологию слоев горных пород. Особое внимание уделяют санитарному состоянию территории в районе забора воды, так как этого зависит не только качество воды в здесь и сейчас, но и перспектива заражения вредоносными микроорганизмами в дальнейшем.

Артезианская и родниковая вода выигрывает у воды из рек и озер, она защищена от бактерий, содержащихся в стоковых водах, от воздействия солнечных лучей и других факторах, способствующих развитию неблагоприятной микрофлоры.

Нормативные документы водно-санитарного законодательства

Поскольку вода являет собой источник человеческой жизни, ее качеству и санитарному состоянию уделяется серьезное внимание, в том числе на законодательном уровне. Основными документами в данной сфере являются Водный кодекс и Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

Водный кодекс содержит в себе правила по использования и охраны водных объектов. Приводит классификацию подземных и поверхностных вод, определяет меры наказания за нарушение водного законодательства и др.

ФЗ «О санитарно-эпидемиологическом благополучии населения» регламентирует требования к источникам, вода из которых может быть использована для питья и ведения хозяйства.

Также существуют государственные стандарты качества, которые определяют показатели пригодности и выдвигают требования к способам анализа воды:

ГОСТы качества воды

  • ГОСТ Р 51232-98 Вода питьевая. Общие требования к организации и методам контроля качества.
  • ГОСТ 24902-81 Вода хозяйственно-питьевого назначения. Общие требования к полевым методам анализа.
  • ГОСТ 27064-86 Качество вод. Термины и определения.
  • ГОСТ 17.1.1.04-80 Классификация подземных вод по целям водопользования.

СНиПы и требования к воде

Строительные нормы и правила (СНиП) содержат в себе правила по организации внутреннего водопровода и канализации зданий, регламентируют монтаж систем водоснабжения, отопления и т.д.

  • СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
  • СНиП 3.05.01-85 Внутренние санитарно-технические системы.
  • СНиП 3.05.04-85 Наружные сети и сооружения водоснабжения и канализации.

СанПиНы на водоснабжение

В санитарно-эпидемиологических правилах и нормах (СанПиН) можно найти, какие существует требования к качеству воды как из центрального водопровода, так и воды из колодцев, скважин.

  • СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.»
  • СанПиН 4630-88 «ПДК и ОДУ вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»
  • СанПиН 2.1.4.544-96 Требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников.
  • СанПиН 2.2.1/2.1.1.984-00 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов.