После начала трудовыех будней времени на это дело не стало совершенно. Поэтому урвал у семьи времени, чтобы сделать несколько крутых штук.

Одна из крутых штук, с которой провозился пол дня - это русский мотив в меди. Он гуглица быстро по запросу "русский орнамент вектор".

Исходники

Бесплатный. Но на самом деле можно просто брать любую русскую роспись и векторизовать. Я его обработал, сделал края не полностью чёрными, а в шашечки, для того, чтобы тонер лучше переводился. Долго мучался и получилось вот такая штукенция


Русский орнамент в меди. Травление. Патина.


Главная беда технологии - это плохой перенос тонера. И зашкуриваю, и обезжириваю, и прогреваю, но всё равно есть огрехи. Например внизу нормально перевелось, а справа я маркером дорисовывал часть рисунка. Есть мысль, что стоит найти тяжёлый утюг.


Попытка снять фактуру

Работой не очень доволен. Она красива, но непереведённый тонер испортил всё. И большие полигоны тонер непереводит, что я не делаю.
Вообще запороть такую картинку проще простого. Другую фотографию гравюру я испортил, и что не делал - исправить не могу. Пришлось делать заново.


Испорченная работа

Работу пришлось переделать. Кстати, обнаружил, что концентрацию перекиси можно смело снижать. На 2 литра у меня отлично травит и с 50 граммами. Как я понял - действующее вещество там лимонная кислота.

А первую половину дня вчера провозился в попытке сделать клеймо, чтобы клеймить свои работы, но дальше вот этого не ушёл...


Заготовка для клейма

Главная запара перенести рисунок - невозможно прогреть такой массив стали. С самоклейки вообще перевести - ужас. Переводить с самоклейки - это просто адский геммоой. Постоянно съезжает стирая исходный рисунок. Кучу бумаги перевёл. Но главная засада была с травлением. Травил медным купоросом с солью. Результат так ужасен, что нафиг сточил результат на шкурке. В общем травить надо электрическим методом, для этого обзавёлся старинным зарядником для акумуляторных батарей:


"Бархат"


Или может ещё лимонной кислотой протравлю.

Кстати, принимаю заказы на рисунки в на текстолите или в меди (подарок любимой). Шильдики и т.п. О цене договоримся. Не лазерная гравировка, огрехи есть, но тут тем интереснее.

На вопрос Что интересного можно сделать с банкой медного купороса? заданный автором росистый лучший ответ это Можно устроить соревнование с това­рищами по выращиванию самого боль­шого кристалла медного купороса. Для этого приготовим раствор медного купо­роса: в 1/2 пробирки воды растворим при постоянном встряхивании медный купо­рос, имеющийся в наборе, до получения интенсивной окраски раствора. Полу­ченный раствор перельем в стакан и оставим его до тех пор, пока вода не испарится. На дне стакана останутся кристаллики медного купороса. Они по­хожи на косоугольники (ромбоэдры) .
Отберем несколько наиболее правиль­ных по форме кристалликов, которые и будут зародышами для выращивания больших кристаллов (рис.) .
31. ПРОЦЕСС ВЫРАЩИВАНИЯ БОЛЬШИХ КРИСТАЛЛОВ МЕДИ СЕРНОКИСЛОЙ (МЕДНОГО КУПОРОСА)
Прежде всего, необходимо приготовить раствор медного купороса, в котором кристаллики будут расти. Возьмем 3/4 пробирки воды и поместим туда немного медного купороса. Пробирку встряхива­ем до тех пор, пока купорос не раство­рится. Затем добавляем постепенно еще купороса до тех пор, пока даже после встряхивания он не растворится. Те­перь раствор нужно нагреть. Избыток медного купороса в теплой воде раство­рится. Оставим раствор до следующего дня, и купорос снова выпадает в оса­док. Жидкость над осадком или, так на­зываемый маточный раствор, сольем в стакан. Положим в маточный раствор 2-3 кристаллика, отобранные в преды­дущем опыте, так, чтобы они не каса­лись друг друга на дне стакана (рис.). Стакан закроем листом бу­маги или картона, чтобы вода не испа­рялась слишком быстро, и каждый день кристаллики будем переворачивать. Помни, они всегда должны быть пол­ностью покрыты раствором, поэтому время от времени необходимо изготав­ливать и доливать новый маточный рас­твор. Выращивание новых кристаллов проводится довольно долго, 5-ти санти­метровые кристаллы нужно выращивать полгода. Наберись терпения, и ты смо­жешь сам вырастить крупные кри­сталлы.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Что интересного можно сделать с банкой медного купороса?

Ответ от Djama [новичек]
сделай кристалл из купороса - красотище! (Не, я в серьёз)


Ответ от Вровень [гуру]
платы травить приемник сделай


Ответ от Elf [эксперт]
Я в детстве выращивал кристаллы, как описывал hugo,
еще использовал как индекатор на присутствие воды. Сначало надо прокалить медный купорос до исчезновения голубоватой окраски, т. е вся вода улетит.
В присутствие влаги, прокаленный белый купорос окрашивается в голубой далее в синий цвет...


Ответ от чистосортный [гуру]
Применяется для борьбы с грибком в сырых помещениях, например, в ванной...


Ответ от Артур Летов [гуру]
Можешь засунуть ее себе в пердачелло, например. Будет весело (я на это надеюсь).


Ответ от Вадим Мореквас [активный]
Регулярно красить купоросом ноги до колен и красиво и мандавошки не вылезут.


Ответ от Papa Jack [гуру]
в ванную насыпай перед купанием, станешь красивого "аватарного" цвета))


Ответ от Azazella [гуру]
да говорят вино на нем продают, синий камень типа, люди юга подскажут и еще морду набьют


Ответ от Николай Гаврилин [активный]
Лизни на пробу.


Ответ от Николай Тимофеев [гуру]
Сделай «Бордосскую смесь» , состоящую из медного купороса и извести.
«Бордосская смесь» или «Бордосская жидкость» применяется уже более ста лет, как один из эффективных химических препаратов в борьбе против садовых вредителей. Лучше всего плодовые деревья и кустарники обрабатывать до роспускания почек. Бордосская смесь прекрасно подходит и для обработки цветов. Основное её действие – уничтожение парши и грибковых болезней деревьев и кустарников.
Приготовление: сразу стоит сказать, что готовиться раствор в стеклянной или пластиковой ёмкости. Железную посуду раствор может попросту разъесть. Сначала отдельно разводится медный купорос – 100 грамм в небольшом количестве воды (тёплой) , затем полученный раствор доводят до пяти литров. Аналогично поступают и с известью: 100 гр негашёной извести гасится в небольшом количестве воды, раствор которой затем доводится до 5 литров. Полученную молочную смесь следует процедить. Затем наступает ответственный момент: в известковый раствор потихоньку добавляется водный раствор медного купороса при постоянном перемешивании.
Если вы всё сделали правильно, то она будет небесно-голубого цвета. Бордосскую смесь не следует хранить, а лучше сразу использовать её по назначению.

Опыты с медной проволокой

С медью можно поставить несколько любопытных опытов, поэтому посвятим ей особую главу.

Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту, то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl 2 .

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет, скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет. Значит, это диоксид углерода. В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь, - оксид меди.

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: СuСО 3 *Сu(ОН) 2 (основной карбонат меди). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода, и пары воды. Зеленый налет называют патиной. Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит.

К опытам с патиной и малахитом мы еще вернемся - в разделе "Приятное с полезным ". А сейчас снова обратим внимание на почерневшую медную проволоку. Нельзя ли вернуть ей первоначальный блеск без помощи кислоты?

Налейте в пробирку аптечного нашатырного спирта, раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь, вода и азот. Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет. Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт. Насыпьте в пробирку немного нашатыря-хлорида аммония NH 4 Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом NH 4 OH, который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым - это улетучиваются частицы нашатыря, А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl 2 .

Именно из-за этой способности - восстанавливать металлическую медь из оксида - нашатырь и применяют при паянии. Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его "жало" окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря - и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше - чистого спирта) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция: медь восстановилась, а этиловый спирт, содержащийся в одеколоне, окислился до уксусного альдегида. Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.

Металлы не очень удобны для опытов: эксперименты с ними требуют, как правило, сложного оборудования. Но некоторые опыты можно поставить и в домашней лаборатории.

Начнем с олова . В хозяйственных магазинах бывают иногда палочки металлического олова для пайки. С таким маленьким слитком можно проделать эксперимент: взять оловянную палочку двумя руками и согнуть - раздастся отчетливый хруст .

У металлического олова такая кристаллическая структура, что при изгибе кристаллики металла как бы трутся друг о друга, возникает хрустящий звук. Кстати, по этому признаку можно отличить чистое олово от оловянных сплавов - палочка из сплава при сгибании никаких звуков не издает.

А сейчас попробуем добыть олово из пустых консервных банок, из тех самых, которые лучше не выбрасывать, а сдавать в утиль. Большинство банок изнутри луженые , т. е. они покрыты слоем олова, который защищает железо от окисления, а пищевые продукты - от порчи. Это олово можно извлечь и использовать повторно.

Прежде всего пустую банку надо как следует очистить. Обычного мытья недостаточно, поэтому налейте в банку концентрированный раствор стиральной соды и поставьте ее на полчаса на огонь, чтобы моющий раствор прокипел как следует. Слейте раствор и промойте банку два-три раза водой. Теперь можно считать ее чистой.

Нам понадобятся две-три батарейки для карманного фонаря, соединенные последовательно; можно, как говорилось выше, взять выпрямитель с трансформатором или аккумулятор на 9-12 В. Каким бы ни был источник тока, к положительному его полюсу присоедините консервную банку (внимательно следите, чтобы был хороший контакт - можно пробить в верхней части банки небольшое отверстие и вдеть в него провод).

Отрицательный полюс соедините с каким-либо куском железа, например, с большим очищенным до блеска гвоздем. Опустите железный электрод в банку так, чтобы он не касался дна и стенок. Как его подвесить - придумайте сами, это нехитрая штука. Налейте в банку раствор щелочи - едкого натра (обращаться крайне осторожно! ) или стиральной соды ; первый, вариант лучше, но требует предельной аккуратности в работе.

Так как раствор щелочи еще не раз будет нужен для опытов, расскажем здесь, как его приготовить. Добавьте стиральную соду Na 2 CO 3 к раствору гашеной извести Са(ОН) 2 и прокипятите смесь. В результате реакции образуется едкий натр NaOH и карбонат кальция, т. е. мел, практически нерастворимый в воде. Значит, в растворе, который после охлаждения надо профильтровать, останется только щелочь. Но вернемся к опыту с консервной банкой. Вскоре на железном электроде начнут выделяться пузырьки газа , а олово с консервной банки станет понемногу переходить в раствор .

Ну а если надо получить не раствор, содержащий олово, а сам металл? Что ж, и это возможно. Выньте из раствора железный электрод и замените его угольным. Тут вам вновь поможет старая, отслужившая свое батарейка, в цинковом стаканчике которой сеть угольный стержень. Извлеките его и соедините проводом с отрицательным полюсом вашего источника тока. На стержне при электролизе будет оседать губчатое олово, причем если напряжение подобрано правильно, то произойдет это довольно быстро.

Правда, может случиться так, что олова с одной банки окажется маловато. Тогда возьмите еще одну банку, аккуратно нарежьте ее на кусочки специальными ножницами для металла и положите внутрь той банки, в которую налит электролит. Будьте внимательны: обрезки не должны касаться угольного стержня!

Собранное на электроде олово можно переплавить. Отключите ток, достаньте угольный стержень с губчатым оловом, положите его в фарфоровую чашку или в чистую металлическую банку и подержите на огне. Вскоре олово сплавится в плотный слиток. Не дотрагивайтесь до него и до банки, пока они не остынут!

Часть губчатого олова можно не переплавлять, а оставить для других опытов. Если растворить его в соляной кислоте - небольшими кусочками и при умеренном нагревании, - то получится раствор хлорида олова . Приготовьте такой раствор концентрацией примерно 7% и добавьте, помешивая, раствор щелочи чуть большей концентрации, около 10%. Сначала выпадет белый осадок, но вскоре он растворится в избытке щелочи. Вы получили раствор гидроксостанната натрия - тот самый, который образовался у вас вначале, когда вы начали растворять олово из банки.

Но если так, то первую часть опыта - перевод металла из банки в раствор - можно уже не повторять, а приступить сразу ко второй его части, когда на электроде оседает металл. Это сэкономит вам немало времени, если вы захотите получить побольше олова из консервных банок.

Свинец плавится еще легче, чем олово. В маленький тигель или в металлическую банку из-под гуталина поместите несколько дробинок и нагрейте на пламени. Когда свинец расплавится, осторожно снимите банку с огня, взяв ее за бортик большим надежным пинцетом или плоскогубцами. Расплав свинца вылейте в гипсовую или металлическую форму либо просто в песчаную лунку - так вы получите самодельное свинцовое литье. Если же и дальше прокаливать расплавленный свинец на воздухе, то через несколько часов на поверхности металла образуется красный налет - двойной оксид свинца ; под названием "свинцовый сурик " его часто использовали прежде для приготовления красок.

Свинец , как и многие другие металлы, взаимодействует с кислотами, вытесняя из них водород . Но попробуйте положить свинец в концентрированную соляную кислоту - он в ней не растворится. Возьмите другую, заведомо более слабую кислоту - уксусную . В ней свинец хоть и медленно, но растворяется!

Этот парадокс объясняется тем, что при взаимодействии с соляной кислотой образуется плохо растворимый хлорид свинца PbCl 2 . Покрывая поверхность металла, он мешает дальнейшему его взаимодействию с кислотой. А вот ацетат свинца Pb(СН 3 СОО) 2 , который получается при реакции с уксусной кислотой , растворяется хорошо и не препятствует взаимодействию кислоты и металла.

С алюминием мы поставим сначала два простых опыта, для которых вполне годится сломанная алюминиевая ложка. Поместите кусочек металла в пробирку с любой кислотой, хотя бы с соляной . Алюминий сразу же начнет растворяться, энергично вытесняя водород из кислоты - образуется соль алюминия А1С1 3 . Другой кусочек алюминия опустите в концентрированный раствор щелочи, например, каустической соды (осторожно! ). И снова металл начнет растворяться с выделением водорода. Только на этот раз образуется другая соль, а именно: алюминат натрия .

Оксид и гидроксид алюминия проявляют одновременно и основные, и кислотные свойства, т. е. они вступают в реакцию как с кислотами, так и со щелочами. Их называют амфотерными . Соединения олова , кстати, тоже амфотерны; проверьте это сами, если, конечно, вы уже извлекли олово из консервной банки.

Существует правило: чем металл активнее, тем он скорее окисляется, подвергается коррозии . Натрий , например, вообще нельзя оставлять на воздухе, его хранят под керосином. Но известен и такой факт: алюминий гораздо активнее, чем, например, железо , однако железо быстро ржавеет, а алюминий, сколько его ни держи на воздухе и в воде, практически не изменяется. Что это - исключение из правила?

Поставим опыт . Закрепите кусочек алюминиевой проволоки в наклонном положении над пламенем газовой горелки или спиртовки так, чтобы нагревалась нижняя часть проволоки. При 660 о С этот металл плавится; казалось бы, можно ожидать, что алюминий начнет капать на горелку. Но вместо того чтобы плавиться, нагретый конец проволоки вдруг резко провисает. Вглядитесь получше, и вы увидите тонкий чехол, внутри которого находится расплавленный металл. Этот "чехол" - из оксида алюминия Аl 2 О 3 , вещества прочного и очень жаростойкого.

Оксид тонким и плотным слоем покрывает поверхность алюминия и не дает ему дальше окисляться. Это его свойство используют на практике. Например, для плакирования металлов; на металлическую поверхность наносят тонкий алюминиевый слой, алюминий сразу же покрывается оксидом, который надежно предохраняет металл от коррозии .

И еще два металла, с которыми мы поставим опыт,- хром и никель . В таблице Менделеева они стоят далеко друг от друга, но есть причина, чтобы рассматривать их вместе: и хромом и никелем покрывают металлические изделия, чтобы они блестели, не ржавели. Так, спинки металлических кроватей покрывают обычно никелем, автомобильные бамперы - хромом.

А можно ли точно узнать, из какого металла сделано покрытие ? Попробуем провести анализ. Отколите кусочек покрытия от старой детали и оставьте его на воздухе на несколько дней, чтобы он успел покрыться пленкой оксида, а затем поместите в пробирку с концентрированной соляной кислотой (обращаться с осторожностью! Кислота не должна попадать на руки и одежду! ).

Если это был никель , то он сразу начнет растворяться в кислоте, образуя соль NiCl 2 ; при этом будет выделяться водород. Если же блестящее покрытие из хрома , то первое время никаких изменений не будет и лишь потом металл начнет растворяться в кислоте с образованием хлорида хрома СгСl 3 . Вынув этот кусочек покрытия из кислоты пинцетом, ополоснув его водой и высушив на воздухе, через два-три дня можно будет снова наблюдать тот же эффект.

Объяснение: на поверхности хрома образуется тончайшая пленка оксида , которая препятствует взаимодействию кислоты с металлом. Однако и она растворяется в кислоте, правда, медленно. На воздухе хром вновь покрывается оксидной пленкой. А вот у никеля такой защитной пленки нет.

Но в таком случае зачем же мы держали металлы на воздухе перед первым опытом? Ведь хром был уже покрыт слоем оксида! А затем, что покрыта была лишь наружная сторона, а внутренняя, обращенная к изделию, с кислородом воздуха в контакт не вступала.

С медью можно поставить несколько любопытных опытов , поэтому посвятим ей особую главу.

Из кусочка медной проволоки сделайте маленькую спиральку и укрепите ее в деревянной держалке (можно оставить свободный конец достаточной длины и намотать его на обычный карандаш). Прокалите спиральку в пламени. Ее поверхность покроется черным налетом оксида меди СuO. Если почерневшую проволоку опустить в разбавленную соляную кислоту , то жидкость окрасится в голубой цвет, а поверхность металла вновь станет красной и блестящей. Кислота, если она не нагрета, не действует на медь, но растворяет ее оксид, превращая его в соль CuCl 2 .

Но вот вопрос: если оксид меди черный, почему старинные медные и бронзовые предметы покрываются не черным, а зеленым налетом, и что это за налет?

Попробуйте найти старый медный предмет , скажем, подсвечник. Соскребите с него немного зеленого налета и поместите в пробирку. Горлышко пробирки закройте пробкой с газоотводной трубкой, конец которой опустите в известковую воду (как ее готовить, вы уже знаете). Нагрейте содержимое пробирки. На ее стенках соберутся капли воды, а из газоотводной трубки будут выделяться пузырьки газа, от которого известковая вода мутнеет . Значит, это диоксид углерода . В пробирке же останется черный порошок, который при растворении в кислоте дает голубой раствор. Этот порошок, как вы, наверное, догадываетесь, оксид меди .

Итак, мы узнали, на какие составные части разлагается зеленый налет. Его формула записывается так: Сu 2 СО 3 (ОН) 2 (дигидроксид-карбонат меди ). Он образуется на медных предметах, поскольку в воздухе всегда есть и диоксид углерода , и пары воды. Зеленый налет называют патиной . Такая же соль встречается и в природе - это не что иное, как знаменитый минерал малахит .

Обратим внимание на почерневшую медную проволоку . Нельзя ли вернуть ей первоначальный блеск без помощи кислоты? Налейте в пробирку аптечного нашатырного спирта , раскалите медную проволоку докрасна и опустите ее в пузырек. Спиралька зашипит и вновь станет красной и блестящей. В одно мгновение произойдет реакция, в результате которой образуется медь , вода и азот . Если опыт повторять несколько раз, то нашатырный спирт в пробирке окрасится в синий цвет . Одновременно с этой реакцией идет и другая, так называемая реакция комплексообразования - образуется то самое комплексное соединение меди, которое ранее позволило нам безошибочно определить аммиак по синему окрашиванию реакционной смеси.

Между прочим, способностью соединений меди вступать в реакцию с нашатырным спиртом пользуются с очень давних времен (еще с тех времен, когда науки химии не было и в помине). Раствором аммиака, т. е. нашатырным спиртом, очищали до блеска медные и латунные предметы. Так, кстати, опытные хозяйки поступают и сейчас; для большего эффекта нашатырный спирт смешивают с мелом, который механически оттирает грязь и адсорбирует загрязнения из раствора.

Следующий опыт . Насыпьте в пробирку немного нашатыря - хлорида аммония NH 4 Cl, которым пользуются при пайке (не путайте его с нашатырным спиртом, который представляет собой водный раствор аммиака). Раскаленной медной спиралькой коснитесь слоя вещества, покрывающего дно пробирки. Снова раздастся шипенье, и вверх взовьется белый дым - это улетучиваются частицы нашатыря. А спиралька вновь засверкает первозданным медным блеском. Произошла реакция, в результате которой образовались те же продукты, что и в прошлом опыте, и впридачу хлорид меди СuСl 2 .

Именно из-за этой способности - восстанавливать металлическую медь из оксида - нашатырь и применяют при паянии . Паяльник обычно изготовлен из меди, которая хорошо проводит тепло; когда его "жало" окисляется, медь теряет способность удерживать на своей поверхности оловянный припой. Немного нашатыря - и оксида как не бывало.

И последний опыт с медной спиралькой. Налейте в пробирку немного одеколона (еще лучше - чистого спирта ) и вновь внесите раскаленную медную проволоку. Результат опыта вы, по всей вероятности, уже представляете: проволока вновь очистилась от пленки оксида. На этот раз произошла сложная органическая реакция : медь восстановилась, а этиловый спирт , содержащийся в одеколоне, окислился до уксусного альдегида . Эта реакция в быту никак не используется, но иногда ее применяют в лаборатории, когда из спирта нужно получить альдегид.

Медная проволока светится в темноте!

Сложность:

Опасность:

Реагенты

Безопасность

  • Перед началом опыта наденьте защитные перчатки и очки.
  • Проводите эксперимент на подносе.

Общие правила безопасности

  • Не допускайте попадания химических реагентов в глаза или рот.
  • Не допускайте к месту проведения экспериментов людей без защитных очков, а также маленьких детей и животных.
  • Храните экспериментальный набор в месте, недоступном для детей младше 12 лет.
  • Помойте или очистите всё оборудование и оснастку после использования.
  • Убедитесь, что все контейнеры с реагентами плотно закрыты и хранятся по правилам после использования.
  • Убедитесь, что все одноразовые контейнеры правильно утилизированы.
  • Используйте только оборудование и реактивы, поставляемые в наборе или рекомендуемые текущими инструкциями.
  • Если вы использовали контейнер для еды или посуду для проведения экспериментов, немедленно выбросьте их. Они больше не пригодны для хранения пищи.

Информация о первой помощи

  • В случае попадания реагентов в глаза тщательно промойте глаза водой, при необходимости держа глаз открытым. Немедленно обратитесь к врачу.
  • В случае проглатывания промойте рот водой, выпейте немного чистой воды. Не вызывайте рвоту. Немедленно обратитесь к врачу.
  • В случае вдыхания реагентов выведите пострадавшего на свежий воздух.
  • В случае контакта с кожей или ожогов промывайте поврежденную зону большим количеством воды в течение 10 минут или дольше.
  • В случае сомнений немедленно обратитесь к врачу. Возьмите с собой химический реагент и контейнер от него.
  • В случае травм всегда обращайтесь к врачу.
  • Неправильное использование химических реагентов может вызвать травму и нанести вред здоровью. Проводите только указанные в инструкции эксперименты.
  • Данный набор опытов предназначен только для детей 12 лет и старше.
  • Способности детей существенно различаются даже внутри возрастной группы. Поэтому родители, проводящие эксперименты вместе с детьми, должны по своему усмотрению решить, какие опыты подходят для их детей и будут безопасны для них.
  • Родители должны обсудить правила безопасности с ребенком или детьми перед началом проведения экспериментов. Особое внимание следует уделить безопасному обращению с кислотами, щелочами и горючими жидкостями.
  • Перед началом экспериментов очистите место проведения опытов от предметов, которые могут вам помешать. Следует избегать хранения пищевых продуктов рядом с местом проведения опытов. Место проведения опытов должно хорошо вентилироваться и находиться близко к водопроводному крану или другому источнику воды. Для проведения экспериментов потребуется устойчивый стол.
  • Вещества в одноразовой упаковке должны быть использованы полностью или утилизированы после проведения одного эксперимента, т.е. после открытия упаковки.

Часто задаваемые вопросы

Проволока не светится. Что делать?

Во-первых, попробуйте немного подождать. Свечение проволоки не очень яркое, и, возможно, ваши глаза просто не успели привыкнуть к темноте. Кстати, а не слишком ли светло вокруг вас? Помните, что чем темнее вокруг, тем эффектнее получается опыт!

Во-вторых, попробуйте ещё раз окунуть проволоку в раствор и немного потереть ею по дну стакана. Скорее всего, это поможет.

В-третьих, прокалите проволоку на газовой горелке или турбо-зажигалке. Медь при взаимодействии с кислородом образует оксид меди CuO, который нужен для протекания нашей реакции.

Наконец, добавьте ещё 5 − 10 капель люминола в стакан, перемешайте и повторите пункт 6 инструкции к эксперименту.

Всё ещё не работает? Возможно, перекись водорода H 2 O 2 немного «выдохлась» и уже не подходит для эксперимента. Вы можете купить 3%-й медицинский раствор перекиси водорода в ближайшей аптеке.

Обратитесь в нашу службу поддержки, если у вас остались вопросы по этому эксперименту.

Другие эксперименты

Пошаговая инструкция

Внимание! Для этого опыта вам понадобится обеспечить темноту в помещении (начиная с пункта 6 данной инструкции). Чем темнее вокруг, тем эффектнее будет выглядеть «призрачная» медная проволока. Заранее продумайте, где вам будет удобно проводить эксперимент.

Подготовьте 3%-й раствор перекиси водорода H 2 O 2

Пошаговая инструкция

  1. В химический стакан из стартового набора вылейте 5 мл 2М раствора карбоната натрия Na 2 CO 3 .
  2. Возьмите пустую пластиковую пробирку и наполните её доверху 3%-м раствором перекиси водорода H 2 O 2 .
  3. Вылейте содержимое пробирки с перекисью водорода в стакан с раствором карбоната натрия.
  4. Добавьте 10 капель 1%-го раствора люминола в стакан.
  5. Согните фигурку из медной проволоки, как показано на рисунке. Вы можете сделать фигурку произвольной формы, например, скрипичный ключ. Главное, чтобы вам было удобно держать фигурку за длинный конец проволоки. Кроме того, опыт получится лучше, если фигурка будет ему перпендикулярна.
  6. Обеспечьте темноту в помещении. Трите проволокой по дну стакана в течение 30 секунд.
  7. Достаньте проволоку из стакана и наблюдайте свечение. Возможно, понадобится пара минут, чтобы глаза привыкли к темноте и свечение стало ярким.

Ожидаемый результат

Медь помогает перекиси водорода H 2 O 2 окислить люминол. В результате раствор люминола, оставшийся на медной проволоке, светится в темноте.

Утилизация

Слейте растворы в раковину, промойте избытком воды.

Что произошло

Почему проволока начинает светиться?

Люминол – особенное соединение. При определённых условиях при его окислении происходит выделение света, то есть множества весьма активных частичек, называемых фотонами, которые наши глаза без труда замечают.

Почему же свечение происходит именно на проволоке? Дело в том, что одним из необходимых условий протекания реакции окисления люминола является наличие вещества, способного забирать у люминола электроны, причём строго по одному. Медь для этого отлично подходит. Но так как она нерастворима в воде, реакция может протекать только при непосредственном соприкосновении с этим металлом. Итак, проволока светится потому, что на её поверхности протекает реакция окисления люминола.

Что происходит с медью?

Свечение медной проволоки происходит как в растворе, так и снаружи (в течение некоторого времени). Чем же объясняется такой эффект? Все необходимые «действующие лица» для реакции окисления люминола способны подходить к поверхности меди. Если проволока остаётся в растворе, возможен обмен между молекулами, которые есть на поверхности меди, и молекулами, свободно плавающими в воде. Поэтому свечение происходит достаточно долго. Однако если вытащить проволоку наружу, такой обмен прекратится, вместе с ним завершится реакция, и свечение постепенно угаснет.

Сама медь в этой реакции не тратится, однако значительно способствует её протеканию, точнее, ускоряет её. Соединения, которые не расходуются в реакции, но увеличивают её скорость, называют катализаторами.

Узнать больше

Каким же образом протекает обмен электронами на поверхности меди? Обратите внимание: перед появлением свечения необходимо потереть проволокой по стенкам сосуда. Это нужно для того, чтобы «оголить» поверхность меди, которая в исходном состоянии покрыта тонким слоем оксида меди CuO. После этого медь может реагировать с приближающимися к ней частицами.

Как это происходит? Представим поверхность медной проволоки: это соединённые между собой атомы меди.

Далее какому-нибудь атому меди надоедает однообразие металлической решётки, ему хочется изучить окрестности, познакомиться с новыми молекулами, например, водой. Так, атом меди покидает решётку в виде иона Cu + , оставив внутри свой электрон.

Но далеко от своих «братьев» ион меди уйти не может и не хочет. Поэтому он фактически путешествует в тонком (фактически толщиной в один атом) слое вплотную к поверхности проволоки. На самом деле таких «бродячих» ионов на поверхности меди достаточно много.

Когда рядом оказывается частица, способная отдать электроны (например, люминол), Cu + обратно переходит в Cu 0 и возвращается в металлическую решётку к своим товарищам. Всего люминол отдаёт ионам меди два электрона. «Лишний» электрон забирает себе перекись водорода H 2 O 2 . Сделав это дважды, она превращается в два гидроксил-аниона OH - :

Все эти процессы протекают на поверхности металла. Поэтому так важно, чтобы реагирующие вещества, в числе которых люминол и перекись водорода, имели возможность контактировать с медью.

Зачем нужна перекись водорода?

Перекись водорода H 2 O 2 , как и вода H 2 O, – это соединение водорода с кислородом. Однако в ней кислород чувствует себя не так уютно, как в воде, и пытается из этого состояния выйти. Поэтому перекись водорода может выступать в качестве окислителя. Именно она в конечном счёте окисляет люминол: так взбудораживает его, что люминол начинает светиться.

Зачем нужен карбонат натрия?

Перекись водорода H 2 O 2 , может, и не самый слабый окислитель, но для выполнения своей роли ей необходима особая обстановка. Всё должно быть тщательно подготовлено, все действующие лица должны быть на своих местах, чтобы застать люминол врасплох! И карбонат натрия как раз является ещё одним персонажем, благодаря которому реакция может протекать.

Окисление люминола перекисью водорода, которое в конечном счёте приводит к свечению, протекает только в щелочной среде, т.е. тогда, когда в растворе оказывается достаточно много ионов OH - . Именно такую среду создаёт карбонат натрия Na 2 CO 3 .

Узнать больше

Возникновение щелочной среды в растворе карбоната натрия связано с тем, что карбонат-ионы CO 3 2– , которые получаются при растворении этого соединения, способны взаимодействовать с водой. При этом образуются гидрокарбонат-ионы HCO 3 – и те самые ионы OH – :

CO 3 2– + H 2 O <=> HCO 3 – +OH –

Почему мы используем именно медь?

Потому что медь способна отнимать у люминола электроны по одному. Большинство металлов предпочитает переходить из металла в раствор в виде двухзарядного катиона, отдавая два электрона:

M → M 2+ + 2e –

Однако медь способна отдавать один электрон, и останавливаться на этом, переходя в форму Cu+. Этим свойством также обладают все щелочные металлы, такие как натрий Na или калий K. Но они настолько активно это делают, что их реакция с водой сопровождается сильным нагреванием или даже взрывом.

Тем не менее, такой одноэлектронный обмен характерен и для серебра:

Ag + + e – –> Ag

Ag – e – –> Ag +

Поэтому его тоже можно использовать в данном опыте. Следует отметить, что и другие металлы также будут способствовать возникновению свечения, однако оно будет менее интенсивным, чем для меди или серебра.

Развитие эксперимента

Светящаяся монетка

Проведите опыт с несколькими разными монетами, чтобы можно было сравнить результаты. Новый раствор готовить не понадобится: все необходимые компоненты уже есть в химическом стакане.

Возьмите монетку и, используя пинцет, зажим или другое удобное для этого приспособление, погрузите её в раствор. Вы можете потереть ею по дну стакана. Не забудьте проводить опыт в темноте!

Достаньте монетку из стакана. Светится ли она? Сравните разные монетки. Поинтересуйтесь, какие металлы использовались в чеканке (так называется процесс изготовления монет) каждой из монет.

Гвоздь, скрепки и другие кандидаты

Повторите опыт (можно использовать раствор, оставшийся от опыта со свечением медной проволоки) с различными небольшими металлическими предметами:

Как ещё можно заставить медь светиться?

В нашем случае медная проволока светилась благодаря особой реакции окисления люминола, в которой медь выступает в качестве ускорителя, то есть катализатора. Однако есть и другие способы заставить медную проволоку светиться. Правда, сама она будет служить исключительно в качестве металлической основы, не участвуя в процессах, протекающих на её поверхности. Для этого мы можем использовать особые вещества, которые светятся не из-за протекания химических реакций (такие вещества называют хемилюминесцентными), а из-за воздействия на них другого света (фотолюминесцентные вещества). Явление свечения вещества под воздействием источника света называют фотолюминесценцией. Она бывает двух видов: флуоресценция и фосфоресценция.

Вам наверняка попадалась на глаза яркая ядовито-зелёная или оранжевая одежда, от которой порой рябит в глазах. Такой эффект возникает из-за того, что в составе таких тканей есть вещества, способные поглощать видимый свет, переходить в так называемое возбуждённое состояние с повышенной энергией, а затем «успокаиваться», выделяя свет обратно.

Такой свет в большинстве случаев яркий и тёплый: оранжевый, зелёный, реже – голубой. Это явление называют флуоресценцией. Выделение света происходит практически сразу после его поглощения веществом. Соответствующие вещества называют флуоресцентными. Мы можем покрасить медную проволоку, используя раствор такого вещества, и она будет светиться.

Если поместить флуоресцентное вещество под свет ультрафиолетовой лампы, то свечение становится намного ярче. Дело в том, что энергия, которую получает вещество от лампы, больше, чем от обычного источника света. Хоть флуоресцентные вещества весьма интересны из-за своих свойств, они обладают важным недостатком: пока на них не попадает свет, сами светиться они не могут.

Можно вспомнить популярные детские игрушки, которые способны светиться в темноте. В состав таких игрушек тоже входят вещества, способные поглощать свет, а затем отдавать его. Причём на выходе получается свет определённого цвета (чаще всего это зелёный). Важное отличие таких веществ от люминесцентных заключается в том, что они способны «заряжаться» от света и постепенно отдавать накопленную таким образом энергию, а не делать это сразу. Их называют фосфоресцентными веществами. Их также можно нанести на проволоку, и она будет светиться.

Наконец, многие наверняка слышали о белом фосфоре – воскообразном веществе, которое тоже способно, будто само по себе, светиться в темноте. В XIX веке свойства белого фосфора активно использовались для различных мистификаций и «пугающего» эффекта. Вспомните, например, развязку расследования гениальным Шерлоком Холмсом тайны собаки Баскервилей из одноимённой повести сэра Артура Конан Дойля. Злодей использовал именно белый фосфор!

Однако белый фосфор светится не сам по себе, а из-за протекающей реакции окисления. В роли вещества, отнимающего у него электроны, выступает кислород воздуха. Поэтому нам и кажется, что белый фосфор светится сам, без какого-либо внешнего воздействия. Явление свечения, которое возникает из-за протекания определённой химической реакции, называют хемилюминесценцией. Мы также могли бы нанести это вещество на медную проволоку, чтобы она светилась в темноте, но делать этого не станем. Белый фосфор крайне ядовит (бедная собака Баскервилей!), и даже профессиональные химики, оснащённые всеми средствами безопасности, стараются избегать работы с ним.