СОДЕРЖАНИЕ:
ВСТУПЛЕНИЕ


РАЗНОВИДНОСТЬ ПРОВОДОВ
СВОЙСТВА ТОКА
ТРАНСФОРМАТОР
НАГРЕВАТЕЛЬНЫЕ ЭЛЕМЕНТЫ


ОПАСНОСТЬ ЭЛЕКТРИЧЕСТВА
ЗАЩИТА
ПОСЛЕСЛОВИЕ
СТИХОТВОРЕНИЕ ПРО ЭЛЕКТРИЧЕСКИЙ ТОК
ДРУГИЕ СТАТЬИ

ВСТУПЛЕИЕ

В одном из эпизодов "Цивилизация" я критиковал несовершенство и громоздкость образования, потому что оно, как правило, преподаётся за-наученным языком, нашпигованным непонятными терминами, без наглядных примеров и образных сравнений. Эта точка зрения не изменилась, но мне наскучило быть голословным, и я попытаюсь описать принципы электричества простым и понятным языком.

Убеждён, что все многотрудные науки, особенно описывающие явления, которые человек не может постичь своими пятью чувствами (зрение, слух, обоняние, вкус, осязание), например, квантовая механика, химия, биология, электроника - должны преподаваться в виде сравнений и примеров. А ещё лучше - создать красочные учебные мультфильмы о невидимых процессах внутри материи. Сейчас я за полчаса сделаю из Вас электро-технически грамотных людей. И так, начинаю описание принципов и законов электричества при помощи образных сравнений...

НАПРЯЖЕНИЕ, СОПРОТИВЛЕНИЕ, ТОК

Можно вращать колесо водяной мельницы толстой струёй со слабым напором или тонкой с большим напором. Напор - это напряжение (измеряется в ВОЛЬТах), толщина струи - ток (измеряется в АМПЕРах), а общая сила бьющая в лопатки колеса - мощность (измеряется в ВАТТах). Водяное колесо образно сравним с электродвигателем. То есть, может быть высокое напряжение и малый ток или низкое напряжение и большой ток, а мощность в обоих вариантах одинаковой.

Напряжение в сети (розетке) стабильно (220 Вольт), а ток всегда разный и зависит от того, что мы включаем, а точнее от сопротивления, которым обладает электроприбор. Ток = напряжение разделить на сопротивление, или мощность разделить на напряжение. Например, на чайнике написано - мощность (Power) 2,2 кВт, значит 2200 Вт (W) - Ватт, делим на напряжение (Voltage) 220 В (V) - Вольт, получаем 10 А (Ампер) - ток, который течёт при работе чайника. Теперь напряжение (220 Вольт) делим на рабочий ток (10 Ампер), получаем сопротивление чайника - 22 Ом (Ома).

По аналогии с водой, сопротивление похоже на трубу заполненную пористым веществом. Чтобы продавить воду через эту пещеристую трубку необходимо определённое давление (напряжение), а количество жидкости (ток) будет зависеть от двух факторов: этого давления, и того, насколько проходима трубка (её сопротивления). Такое сравнение подходит нагревательным и осветительным приборам, и называется АКТИВНЫМ сопротивлением, а сопротивление катушек эл. двигателей, трансформаторов и эл. магнитов работает иначе (об этом несколько позже).

ПРЕДОХРАНИТЕЛИ, АВТОМАТЫ, ТЕРМОРЕГУЛЯТОРЫ

Если сопротивление отсутствует, то ток стремится увеличиться до бесконечности и расплавляет провод - это называется коротким замыканием (КЗ). Чтобы защитить от этого эл. проводку ставятся предохранители или автоматические выключатели (автоматы). Принцип действия предохранителя (вставка плавкая) предельно прост, это умышленно-тонкое место в эл. цепи, а где тонко - там рвётся. В керамическом термостойком цилиндре вставлена тонкая медная проволока. Толщина (сечение) проволоки значительно тоньше эл. проводки. Когда ток превышает допустимый предел - проволока перегорает и "спасает" провода. В рабочем режиме проволока может сильно нагреваться, поэтому для её охлаждения внутри предохранителя засыпан песок.

Но чаще для защиты эл.проводки используются не предохранители, а автоматические выключатели (автоматы). Автоматы имеют две функции защиты. Одна срабатывает, когда в сеть включают слишком много электроприборов и ток превышает допустимый предел. Это биметаллическая пластина, изготовленная из двух слоёв разных металлов, которые при нагревании расширяются не одинаково, один больше, другой меньше. Через эту пластину проходит весь рабочий ток, и когда он превышает предел, то она нагревается, выгибается (из-за неоднородности) и размыкает контакты. Автомат обычно не сразу удаётся включить обратно, потому что пластина ещё не остыла.

(Такие пластины широко применяются и в термо-датчиках защищающих многие бытовые приборы от перегрева и перегорания. Разница лишь в том, что пластину нагревает не проходящий через неё запредельный ток, а непосредственно сам нагревательный элемент прибора, к которому датчик плотно привинчен. В приборах с желаемой температурой (утюги, обогреватели, стиральные машины, водонагреватели) предел отключения устанавливается ручкой термо-регулятора, внутри которого тоже есть биметаллическая пластина. Она, то размыкает, то замыкает контакты поддерживая заданную температуру. Как если, не меняя силу огня конфорки, то ставить на него чайник, то снимать.)

Ещё внутри автомата есть катушка из толстого медного провода, через которую тоже проходит весь рабочий ток. При коротком замыкании сила магнитного поля катушки достигает мощности, которая сжимает пружину и втягивает подвижный стальной стержень (сердечник) установленный внутри неё, а он мгновенно выключает автомат. В рабочем режиме силы катушки недостаточно, чтобы сжать пружину сердечника. Таким образом автоматы обеспечивают защиту от короткого замыкания (КЗ), и от длительной перегрузки.

РАЗНОВИДНОСТЬ ПРОВОДОВ

Провода электропроводки бывают алюминиевыми или медными. От их толщины (сечения в квадратных миллиметрах) зависит максимально допустимый ток. Например, 1 квадратный миллиметр меди выдерживает 10 Ампер. Типовые стандарты сечения проводов: 1,5; 2,5; 4 "квадрата" - соответственно: 15; 25; 40 Ампер - их допустимые длительные токовые нагрузки. Алюминиевые провода выдерживают ток меньше приблизительно в полтора раза. Основная масса проводов имеет виниловую изоляцию, которая плавится при перегревании провода. В кабелях используется изоляция из более тугоплавкой резины. А бывают провода с фторопластовой (тефлоновой) изоляцией, которая не плавится даже в огне. Такие провода могут выдерживать бОльшие токовые нагрузки, чем провода имеющие ПВХ изоляцию. Провода для высокого напряжения имеют толстую изоляцию, например на автомобилях в системе зажигания.

СВОЙСТВА ТОКА

Для электрического тока необходима замкнутая цепь. По аналогии с велосипедной, где ведущая звезда с педалями соответствует источнику эл. энергии (генератору или трансформатору), звезда на заднем колесе - электроприбор, который мы включаем в сеть (обогреватель, чайник, пылесос, телевизор и т.п.). Верхний отрезок цепи, который передаёт усилие с ведущей на заднюю звезду аналогичен потенциалу с напряжением - фазе, а нижний отрезок, который пассивно возвращается - нулевому потенциалу - нулю. Поэтому в розетке два отверстия (ФАЗА и НОЛЬ), как в системе водяного отопления - приходящая труба, по которой поступает кипяток, и обратка - по ней уходит вода отдавшая тепло в батареях (радиаторах).

Токи бывают двух видов - постоянный и переменный. Естественный постоянный ток, который течёт в одном направлении (подобно воде в отопительной системе или велосипедной цепи) производят только химические источники энергии (батарейки и аккумуляторы). Для более мощных потребителей (например, трамваев и троллейбусов) его "выпрямляют" из переменного тока посредством полупроводниковых диодных "мостов", которые можно сравнить с защёлкой дверного замка - в одну сторону пропускают, в другую - запираются. Но такой ток получается неровным, а пульсирующим, как пулемётная очередь или отбойный молоток. Для сглаживания импульсов ставятся конденсаторы (ёмкость). Их принцип можно сравнить с большой полной бочкой, в которую льётся "рваная" и прерывистая струя, а из её крана снизу вода вытекает стабильно и ровно, и чем больше объём бочки - тем качественнее струя. Ёмкость конденсаторов измеряется в ФАРАДах.

Во всех бытовых сетях (квартирах, домах, офисных зданиях и на производстве) ток переменный, его легче вырабатывать на электростанциях и трансформировать (понижать или повышать). А большинство эл. двигателей могут работать только на нём. Он течёт туда-обратно, как если набрать в рот воды, вставить длинную трубочку (соломинку), другой её конец погрузить в полное ведро, и попеременно, то выдувать, то втягивать воду. Тогда рот будет аналогичен потенциалу с напряжением - фазе, а полное ведро - нулём, который сам по себе не активен и не опасен, но без него невозможно движение жидкости (тока) в трубке (проводе). Или, как при распиливании бревна ножовкой, где рука будет фазой, амплитуда движения - напряжением (В), усилие руки - током (А), энергичность - частотой (Гц), а само бревно - эл. прибором (обогревателем или эл. двигателем), только вместо распиливания - полезная работа. Половой акт тоже подходит для образного сравнения, мужчина - "фаза", женщина - НОЛЬ!, амплитуда (длина) - напряжение, толщина - ток, скорость - частота.

Количество колебаний всегда неизменно, и всегда такое, какое производится на электростанции и подаётся в сеть. В Российских сетях число колебаний - 50 раз в секунду, и называется частотой переменного тока (от слова чАсто, а не чИсто). Единица измерения частоты - ГЕРЦы (Гц), то есть в наших розетках всегда 50 Гц. В некоторых странах частота в сетях 100 Герц. От частоты зависит скорость вращения большинства эл. двигателей. На 50-ти Герцах максимальное число оборотов - 3000 об/мин. - на трёх-фазном питании и 1500 об/мин. - на однофазном (бытовом). Переменный ток также необходим для работы трансформаторов, которые понижают высокое напряжение (10 000 Вольт) до обычного бытового или промышленного (220/380 Вольт) на электро-подстанциях. А также для малых трансформаторов в электронной аппаратуре, которые понижают 220 Вольт до 50, 36, 24 Вольт и ниже.

ТРАНСФОРМАТОР

Трансформатор состоит из электротехнического железа (набранного из пакета пластин), на котором через изолирующую катушку намотан провод (медная проволока покрытая лаком). Одна обмотка (первичная) выполнена из тонкого провода, но с большим числом витков. Другая (вторичная) намотана через слой изоляции поверх первичной (или на соседней катушке) из толстого провода, но с малым числом витков. На концы первичной обмотки приходит высокое напряжение, и вокруг железа возникает переменное магнитное поле, которое наводит ток во вторичной обмотке. Во сколько раз в ней (вторичной) меньше витков - во столько же будет ниже напряжение, а во сколько раз толще провод - во столько больший ток можно снимать. Как если, бочка с водой будет наполняться тонкой струёй, но с огромным напором, а снизу из большого крана будет вытекать толстая струя, но с умеренным напором. Аналогичным образом трансформаторы могут быть наоборот - повышающими.

НАГРЕВАТЕЛЬНЫЕ ЭЛЕМЕНТЫ

В нагревательных элементах, в отличии от трансформаторных обмоток, бОльшему напряжению будет соответствовать не количество витков, а длина нихромовой проволоки, из которой сделаны спирали и тэны. Например, если распрямить спираль электрической плитки на 220 Вольт, то длина проволоки будет примерно равна 16-20 метрам. То есть, чтобы намотать спираль на рабочее напряжение 36 Вольт, нужно 220 разделить на 36, получится 6. Значит длина проволоки спирали на 36 Вольт будет в 6 раз короче, примерно 3 метра. Если спираль интенсивно обдувается вентилятором, то она может быть в 2 раза короче, потому что поток воздуха сдувает с неё тепло и не даёт перегореть. А если наоборот закрыта, то длиннее, иначе перегорит от недостатка теплоотдачи. Можно, к примеру, включить два тэна на 220 Вольт одинаковой мощности последовательно в 380 Вольт (между двух фаз). И тогда каждый из них будет под напряжением 380: 2 = 190 Вольт. То есть на 30 Вольт меньше расчётного напряжения. В таком режиме они будут греться немного (на 15%) послабее, зато никогда не перегорят. Так же и с лампочками, например, можно последовательно соединить 10 одинаковых лампочек на 24 Вольта, и включить их гирляндой в сеть 220 Вольт.

ВЫСОКОВОЛЬТНЫЕ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ

Передавать электроэнергию на большие расстояния (от гидро или атомной электростанции до города) целесообразно только под большим напряжением (100 000 Вольт) - так толщину (сечение) проводов на опорах воздушных линий электропередач можно сделать минимальной. Если бы электроэнергию передавали сразу под небольшим напряжением (как в розетках - 220 Вольт), то провода воздушных линий пришлось бы делать толщиной с брёвна, и никаких запасов алюминия на это не хватило бы. К тому же высокое напряжение легче преодолевает сопротивление провода и контактов соединений (у алюминия и меди оно ничтожно, но на длине в десятки километров всё же набегает прилично), подобно несущемуся на бешеной скорости мотоциклисту, который легко перелетает через ямы и овражки.

ЭЛЕКТРОДВИГАТЕЛИ И ТРЁХФАЗНОЕ ПИТАНИЕ

Одна из основных потребностей в переменном токе - асинхронные эл. двигатели, широко распространённые из-за своей простоты и надёжности. Их роторы (вращающаяся часть двигателя) не имеют обмотки и коллектора, а представляют собой просто болванки из электротехнического железа, в котором прорези для обмотки залиты алюминием - в таком исполнении нечему ломаться. Вращаются они за счёт переменного магнитного поля создаваемого статором (неподвижной частью эл. двигателя). Для обеспечения правильной работы эл. двигателей такого типа (а их подавляющее большинство) повсеместно преобладает 3-х фазное питание. Фазы, как три сестры-близняшки ничем не отличаются. Между каждой из них и нулём - напряжение 220 Вольт (В), частота каждой 50 Герц (Гц). Отличаются они только сдвигом во времени и "именами" - А,В,С.

Графическое изображение переменного тока одной фазы изображается в виде волнообразной линии, которая виляет змеёй через прямую - разделяющую эти зигзаги пополам на равные части. Верхние волны отображают движение переменного тока в одну, нижние - в другую стороны. Высота вершин (верхних и нижних) соответствует напряжению (220 В), потом график спадает до нуля - прямой линии (протяжённость которой отображает время) и снова достигает вершины (220 В) с нижней стороны. Расстояние между волнами вдоль прямой линии выражает частоту (50 Гц). Три фазы на графике представляют собой три волнообразных линии наложенных друг на друга, но с отставанием, то есть, когда волна одной достигает пика, другая уже идёт на спад, и так поочерёдно - как упавший на пол гимнастический обруч или крышка кастрюли. Этот эффект необходим для создания вращающегося магнитного поля в трёх-фазных асинхронных двигателях, которое и раскручивает их подвижную часть - ротор. Это аналогично велосипедным педалям, на которые ноги подобно фазам давят попеременно, только здесь как бы три педали расположенных относительно друг друга под углом 120 градусов (как эмблема "Мерседеса" или трёх-лопастной пропеллер самолёта).

Три обмотки эл. двигателя (для каждой фазы своя) на схемах изображаются так же, наподобие пропеллера с тремя лопастями, одними концами соединённые в общей точке, другими с фазами. Обмотки трёх-фазных трансформаторов на подстанциях (которые понижают высокое напряжение до бытового) соединёны так же, а НОЛЬ идёт из общей точки соединения обмоток (нейтраль трансформатора). Генераторы вырабатывающие эл. энергию имеют аналогичную схему. В них механическое вращение ротора (посредством гидро или паровой турбины) преобразуется в электроэнергию на электростанциях (а в небольших передвижных генераторах - посредством двигателя внутреннего сгорания). Ротор своим магнитным полем наводит электрический ток в трёх обмотках статора с отставанием в 120 градусов по окружности (как эмблема "Мерседеса"). Получается трёх-фазный переменный ток с разновременной пульсацией, создающей вращающееся магнитное поле. Электродвигатели же наоборот - трёх-фазный ток через магнитное поле превращают в механическое вращение. Провода обмоток не обладают сопротивлением, но ток в обмотках ограничивает магнитное поле создаваемое их витками вокруг железа, наподобие силе тяжести, действующей на едущего в гору велосипедиста и не позволяющей ему разгоняться. Сопротивление магнитного поля ограничивающего ток называется ИНДУКТИВНЫМ.

За счёт отставания фаз друг от друга и достижения ими пикового напряжения в разные мгновения, между ними получается разность потенциалов. Это называется линейным напряжением, и в бытовых сетях составляет 380 Вольт (В). Линейное (межфазное) напряжение всегда больше фазного (между фазой и нулём) в 1,73 раза. Этот коэффициент (1,73) широко применяется в расчётных формулах трёх-фазных систем. Например, ток каждой фазы эл. двигателя = мощность в Ваттах (Вт) разделить на линейное напряжение (380 В) = общий ток во всех трёх обмотках, который ещё делим на коэффициент (1,73), получаем ток на каждой фазе.

Трёх-фазное питание создающее вращательный эффект для эл. двигателей, по причине всеобщего стандарта обеспечивает электроснабжение и на бытовых объектах (жилых, офисных, торговых, учебных зданиях) - там, где эл. двигатели не используется. Как правило, 4-х проводные кабели (3 фазы и ноль) приходят на общие распределительные щитки, а оттуда расходятся парами (1 фаза и ноль) по квартирам, офисам, и др. помещениям. Из-за неравенства токовых нагрузок в разных помещениях часто перегружается общий ноль, который приходит на эл. щиток. Если он перегреется и отгорит, то получается, что, к примеру, соседние квартиры включены последовательно (так как они соединены нулями на общей контактной планке в эл. щитке) между двух фаз (380 Вольт). И если у одного соседа работают мощные эл. приборы (такие, как чайник, обогреватель, стиральная машина, водонагреватель), а у другого мало-мощные (телевизор, компьютер, аудио-техника), то более мощные потребители первого, из-за малого сопротивления, станут хорошим проводником, и в розетках другого соседа вместо нуля появится вторая фаза, и напряжение будет свыше 300 Вольт, которое сразу сожжёт его аппаратуру, в том числе и холодильник. Поэтому желательно регулярно проверять надёжность контакта приходящего из питающего кабеля нуля с общим распределительным эл.щитом. И если он греется, то отключить автоматы всех квартир, зачистить нагар и капитально затянуть контакт общего нуля. При относительно равных нагрузках на разных фазах - бОльшую долю обратных токов (через общую точку соединения нулей потребителей) взаимо-поглотят соседние фазы. В трёх-фазных эл. двигателях токи фаз равны и полностью уходят через соседние фазы, поэтому ноль им вообще не нужен.

Одно-фазные эл. двигатели работают от одной фазы и нуля (например, в бытовых вентиляторах, стиральных машинах, холодильниках, компьютерах). В них, чтобы создать два полюса - обмотка разделена пополам и расположена на двух противоположных катушках с разных сторон ротора. А для создания вращательного момента необходима вторая (пусковая) обмотка, намотанная так же на двух противоположных катушках и своим магнитным полем пересекает поле первой (рабочей) обмотки под 90 градусов. Пусковая обмотка имеет в цепи конденсатор (ёмкость), который сдвигает её импульсы и как бы искусственно эмитирует вторую фазу, благодаря которой и создаётся вращательный момент. Из-за необходимости делить обмотки пополам - скорость вращения асинхронных однофазных эл. двигателей не может быть больше 1500 об/мин. В трёх-фазных эл. двигателях катушки могут быть едиными, располагаясь в статоре через 120 градусов по окружности, тогда максимальная скорость вращения будет 3000 об/мин. А если они разделены пополам каждая, то получится 6 катушек (по две на фазу), тогда скорость будет в 2 раза меньше - 1500 об.мин., а сила вращения в 2 раза больше. Может быть и 9 катушек, и 12, соответственно 1000 и 750 об/мин., с увеличением силы во столько же раз, во сколько меньше число оборотов в минуту. Обмотки однофазных двигателей тоже могут быть раздроблены больше чем пополам с аналогичным уменьшением скорости и увеличением силы. То есть, низко-оборотный двигатель труднее удержать чем-либо за вал ротора, чем высокооборотный.

Есть ещё один распространённый тип эл. двигателей - коллекторные. Их роторы несут на себе обмотку и контактный коллектор, на который через медно-графитовые "щётки" приходит напряжение. Она (обмотка ротора) создаёт своё магнитное поле. В отличии от пассивно раскручиваемой железно-алюминиевой "болванки" асинхронного эл. двигателя, магнитное поле обмотки ротора коллекторного движка активно отталкивается от поля его статора. У таких эл. двигателей другой принцип работы - подобно двум одноимённым полюсам магнита, ротор (вращающаяся часть эл. двигателя) стремится оттолкнуться от статора (неподвижной части). А так как вал ротора прочно зафиксирован двумя подшипниками на концах, то от "безысходности" ротор активно выкручивается. Эффект аналогичен белке в колесе, которая чем быстрее бежит - тем стремительнее раскручивается барабан. Поэтому такие эл. двигатели имеют гораздо бОльшие и регулируемые в широком диапазоне обороты, чем асинхронные. К тому же они, при той же мощности, значительно компактнее и легче, не зависят от частоты (Гц) и работают как на переменном, так и на постоянном токе. Применяются, как правило, в мобильных агрегатах: электровозы поездов, трамваи, троллейбусы, электромобили; а так же во всех переносных эл. приборах: эл.дрели, болгарки, пылесосы, фены... Но значительно уступают в простоте и надёжности асинхронникам, которые применяются в основном на стационарном электрооборудовании.

ОПАСНОСТЬ ЭЛЕКТРИЧЕСТВА

Электрический ток может преобразовываться в СВЕТ (посредством прохождения через нить накала, люминесцирующий газ, кристаллы светодиодов), ТЕПЛО (преодолевая сопротивление проволоки из нихрома с неизбежным её нагревом, которая используется во всех нагревательных элементах), МЕХАНИЧЕСКУЮ РАБОТУ (через создаваемое эл. катушками магнитного поля в эл. двигателях и эл. магнитах, которые соответственно вращают и втягивают). Однако, эл. ток таит в себе смертельную опасность для живого организма, через который он может пройти.

Некоторые люди говорят: "Меня било 220 Вольт". Это не верно, потому что ущерб наносит не напряжение, а ток, который проходит через тело. Его величина, при одном и том же напряжении, может в десятки раз отличаться по ряду причин. Огромное значение имеет и путь его прохождения. Чтобы через организм пошёл ток, необходимо быть частью электрической цепи, то есть, стать его проводником, а для этого Вы должны прикоснуться к двум разным потенциалам одновременно (фазе и нулю - 220 В, или двум разноимённым фазам - 380 В). Самые распространённые опасные протекания тока - от одной руки к другой, или от левой руки к ногам, потому что так путь проляжет через сердце, которое может остановиться от силы тока всего в одну десятую Ампера (100 миллиампер). А если, к примеру, коснуться разными пальцами одной руки оголённых контактов розетки - ток пройдёт от пальца к пальцу, а тело не затронет (если конечно ноги стоят на НЕ проводящем полу).

Роль нулевого потенциала (НУЛЯ) может сыграть земля - в буквальном смысле сама поверхность почвы (особенно сырая), либо металлическая или железобетонная конструкция, которая врыта в землю или имеет с ней значительную площадь соприкосновения. Совсем необязательно хвататься обеими руками за разные провода, можно просто стоя босиком или в плохой обуви на сырой земле, бетонном или металлическом полу коснуться любой частью тела оголённого провода. И мгновенно от этой части, через тело к ногам потечёт коварный ток. Даже если пойти по нужде в кусты и струёй ненароком попасть по оголённой фазе, то путь тока проляжет через (солёную и гораздо более проводимую) струю мочи, половую систему и ноги. Если же на ногах сухая обувь на толстой подошве или сам пол деревянный, то НУЛЯ не будет и ток не потечёт даже если Вы зубами вцепитесь в один оголённый ФАЗНЫЙ провод под напряжением (яркое тому подтверждение - птицы сидящие на неизолированных проводах).

Величина тока в значительной степени зависит и от площади прикосновения. Например, можно слегка дотронуться сухими кончиками пальцев до двух фаз (380 В) - ударит, но не смертельно. А можно схватиться за два медных толстых прутка, к которым подведено всего 50 Вольт, обеими мокрыми кистями рук - площадь соприкосновения + сырость обеспечат проводимость в десятки раз большую, нежели в первом случае, и величина тока будет смертельной. (Мне доводилось видеть электрика, у которого пальцы были настолько заскорузлыми, сухими и мозолистыми, что он, как в перчатках, спокойно работал под напряжением.) К тому же, когда человек касается напряжения кончиками пальцев или тыльной стороной ладони, то он рефлекторно отдёргивается. Если же схватиться как за поручни, то напряжение вызывает сокращение мышц кистей и человек вцепляется с силой, на которую никогда не был способен, и его уже никто не сможет оторвать пока не отключат напряжение. А время воздействия (миллисекунды или секунды) электрического тока - тоже весьма значимый фактор.

Например, на электрическом стуле человеку на предварительно выбритую голову одевают (через смоченную специальным, хорошо проводящим раствором тряпичную прокладку) плотно затягивающийся широкий металлический обруч, к которому присоединён один провод - фазный. Второй потенциал подключают к ногам, на которых (на голени около лодыжек) плотно затянуты широкие металлические хомуты (опять же с мокрыми спец-прокладками). За предплечья приговорённый надёжно фиксируется к подлокотникам стула. При включении рубильника, между потенциалами головы и ног появляется напряжение 2000 Вольт! Подразумевается, что при получаемой силе тока и его пути прохождения, потеря сознания происходит мгновенно, а остальное время "дожигания" тела гарантирует гибель всех жизненно-важных органов. Только пожалуй, сама процедура приготовления подвергает несчастного такому запредельному стрессу, что сам электро-удар становится избавлением. Но не пугайтесь - в нашем государстве такой казни пока нет...

И так, опасность удара эл. током зависит от: напряжения, пути протекания тока, сухих или влажных (пот из-за солей имеет хорошую проводимость) частей тела, площади контакта с оголёнными проводниками, изолированности ног от земли (качество и сухость обуви, сырость почвы, материал полов), времени воздействия тока.

Но, чтобы попасть под напряжение не обязательно хвататься за оголённый провод. Может случиться так, что изоляция обмотки электро-агрегата нарушится, и тогда ФАЗА окажется на его корпусе (если он металлический). Например, был в соседнем доме такой случай - мужчина жарким летним днём взобрался на старый железный холодильник, сел на него голыми, потными (и соответственно солёными) ляжками, и принялся сверлить потолок электродрелью, держась второй рукой за её металлическую часть возле патрона... То-ли он попал в арматуру (а она обычно приварена к общему заземляющему контуру здания, что равноценно НУЛЮ) бетонной плиты потолка, то-ли в собственную эл.проводку?? Только свалился замертво, сражённый наповал чудовищным ударом электрического тока. Комиссия обнаружила на корпусе холодильника ФАЗУ (220 вольт), которая появилась на нём из-за нарушения изоляции обмотки статора компрессора. Пока не коснёшься одновременно корпуса (с притаившейся фазой) и нуля или "земли" (например, железной водопроводной трубы) - ничего не произойдёт (на полу ДСП и линолеум). Но, как только "найдётся" второй потенциал (НОЛЬ или другая ФАЗА) - удар неизбежен.

Для предотвращения подобных несчастных случаев делается ЗАЗЕМЛЕНИЕ. То есть, через специальный защитный заземляющий провод (жёлто-зелёного цвета) на металлические корпуса всех эл. приборов присоединяется НУЛЕВОЙ потенциал. Если изоляция нарушится и ФАЗА коснётся корпуса, то мгновенно произойдёт короткое замыкание (КЗ) с нулём, в результате этого автомат разорвёт цепь и фаза не останется незамеченной. Поэтому электротехника перешла на трёх-проводную (фаза - красный или белый, ноль - голубой, земля - жёлто-зелёный провода) проводку в однофазном эл.питании, и пяти-проводную в трёхфазном (фазы - красный, белый, коричневый). В так называемых евро-розетках кроме двух гнёзд добавились ещё и заземляющие контакты (усы) - к ним присоединяется жёлто-зелёный провод, а на евро-вилках кроме двух штырей есть контакты, с которых тоже жёлто-зелёный (третий) провод идёт на корпус электроприбора.

Чтобы не устраивать КЗ, последнее время широко применяются УЗО (устройство защитного отключения). УЗО сравнивает фазный и нулевой токи (сколько вошло и сколько вышло), и когда появляется утечка, то есть, либо нарушилась изоляция, и обмотка двигателя, трансформатора или спираль нагревателя "прошивает" на корпус, либо вообще человек прикоснулся к токо-ведущим частям, то "нулевой" ток будет меньше фазного и УЗО мгновенно отключится. Такой ток называется ДИФЕРЕНЦИАЛЬНЫМ, то есть сторонним ("левым") и не должен превышать смертельную величину - 100 миллиампер (1 десятую Ампера), а для бытового однофазного питания этот предел обычно 30 mA. Такие устройства обычно ставятся на вводе (последовательно с автоматами) проводки питающей сырые опасные помещения (например ванной комнаты) и защищают от удара эл.током от рук - на "землю" (пол, ванну, трубы, воду). От прикосновения двумя руками за фазу и рабочий ноль (при НЕ проводящем полу) УЗО не сработает.

Заземляющий (жёлто-зелёный провод) приходит от одной точки с нулём (с общей точки соединения трёх обмоток трёх-фазного трансформатора, которая ещё присоединёна к большому металлическому стержню, глубоко врытому в землю - ЗАЗЕМЛЕНИЮ на питающей микрорайон эл.подстанции). Практически, это тот же ноль, но "освобождённый" от работы, просто "охранник". Так что, за отсутствием заземляющего провода в проводке, можно использовать нулевой провод. А именно - в евро-розетке поставить перемычку с нулевого провода на заземляющие "усы", тогда при нарушении изоляции и утечке на корпус сработает автомат и отключит потенциально-опасный прибор.

А можно изготовить заземление самостоятельно - вбить глубоко в землю пару-тройку ломов, пролить очень солёным раствором и присоединить заземляющий провод. Если присоединить его к общему нулю на вводе (до УЗО), то он будет надёжно предохранять от появления в розетках второй ФАЗЫ (описывалось выше) и сгорания бытовой аппаратуры. Если же нет возможности дотянуть его до общего нуля, например в частном доме, то на свой ноль следует поставить автомат, как на фазе, иначе при отгорании общего нуля в распред-щите, ток соседей пойдёт через Ваш ноль на самодельное заземление. А с автоматом поддержка соседям будет оказана только до его предела и Ваш ноль не пострадает.

ПОСЛЕСЛОВИЕ

Ну вот, кажется все основные распространённые нюансы электричества не касающегося профессиональной деятельности я описал. Более глубокие подробности потребуют ещё более длинного текста. Насколько понятно и доходчиво получилось - судить тем, кто вообще далёк и некомпетентен в этой теме (был:-).

Низкий поклон и светлая память великим физикам Европы, увековечившим свои имена в единицах измерения параметров электрического тока: Александро Джузеппе Антонио Анастасио ВОЛЬТА - Италия (1745-1827); Андре Мари АМПЕР - Франция (1775-1836); Георг Симон ОМ - Германия (1787-1854); Джеймс УАТТ - Шотландия (1736-1819); Генрих Рудольф ГЕРЦ - Германия (1857- 1894); Майкл ФАРАДЕЙ - Англия (1791-1867).

СТИХОТВОРЕНИЕ ПРО ЭЛЕКТРИЧЕСКИЙ ТОК:


Погоди, не теки, потолкуем чуток.
Ты постой, не спеши, лошадей не гони.
Мы с тобой в этот вечер в квартире одни.

Электрический ток, электрический ток,
Напряженьем похожий на Ближний Восток,
С той поры, как увидел я Братскую ГЭС,
Зародился к тебе у меня интерес.

Электрический ток, электрический ток,
Говорят, ты порою бываешь жесток.
Может жизни лишить твой коварный укус,
Ну и пусть, все равно я тебя не боюсь!

Электрический ток, электрический ток,
Утверждают, что ты - электронов поток,
И болтает к тому же досужий народ,
Что тобой управляют катод и анод.

Я не знаю, что значит «анод» и «катод»,
У меня и без этого много забот,
Но пока ты течешь, электрический ток,
Не иссякнет в кастрюле моей кипяток.

Игорь Иртеньев 1984

Содержание:

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором - периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется , измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как . Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица - вольт . Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление , измеряемое в омах . Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока - 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и . Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким - на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов - напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность , связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит . Он означает перемещение одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

Каждый из нас, когда начинает увлекаться чем-то новым, сразу кидается в «пучину страсти» пытаясь выполнить или реализовать непростые проекты самоделок . Так было и со мной, когда я увлекся электроникой. Но как обычно бывает – первые неудачи поубавили запал. Однако отступать я не привык и начал систематически (буквально с азов) постигать таинства мира электроники. Так и родилось «руководство для начинающих технарей»

Шаг 1: Напряжение, ток, сопротивление

Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц. Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении. Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.

Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.

Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.

Напряжение является причиной, а ток – результатом.

Единица измерения сопротивления – Ом (Ω).

Шаг 2: Источник питания

Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.

  • Батареи;
  • Аккумуляторы.

Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров. В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:

Батареи 1,5 В

Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.

3В литиевая «монетка»

Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.

Никель-металлогидридные (NiМГ)

Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках .

3.7 В литий-ионные и литий-полимерные аккумуляторы

Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.

9-вольтовая батарея

Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.

Свинцово-кислотные

Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.

Последовательно-параллельное соединение батарей

Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.

Существует два важных момента относительно батарей:

Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях. Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.

Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час). Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки. Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.

Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.

Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.

Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.

С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.

Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.

Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут. Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.

Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею. Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.

Как лучше выбрать батарею для поделки ?

Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта. Если проект очень энергозависимый (большие системы звука и моторизованные самоделки ) следует выбирать свинцово-кислотную батарею. Если вы хотите построить переносную поделку , которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках. Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.

Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.

Шаг 3: Резисторы

Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.

Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.

Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно) 5.6MΩ.

Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:

  • с чётко заданными характеристиками;
  • общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).

Пример общих характеристик:

  • Температурный коэффициент;
  • Коэффициент напряжения;
  • Частотный диапазон;
  • Мощность;
  • Физический размер.

По своим свойствам резисторы могут быть классифицированы как:

Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.

Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.

Есть несколько типов нелинейных резисторов:

  • Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
  • Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
  • Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
  • Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.

Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.

Кроме этого, резисторы бывают с постоянным и переменным значением:

Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.

Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.

Магазин сопротивлений:

Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.

По составу резисторы бывают:

Углеродные:

Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.

Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.

Осаждения углерода:

Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.

Пленочный резистор:

Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.

Проволочный резистор:

Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.

Метало-керамические:

Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.

Прецизионные резисторы:

Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).

Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.

Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.

Плавкий резистор:

Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.

Терморезисторы:

Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.

Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).

Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.

Фоторезисторы:

Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.

Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.

Выводные и безвыводные типы резисторов:

Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.

Резисторы поверхностного монтажа:

Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.

Шаг 4: Стандартные или общие значения резисторов

Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.

Терпимость 20% E6,

Терпимость 10% E12,

Терпимость 5% E24 (и обычно 2%-я терпимость),

Терпимость 2% E48,

E96 1% терпимости,

E192 0,5, 0,25, 0,1% и выше допуски.

Стандартные значения резисторов:

Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68

E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976

E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988

При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.

Продолжение следует

Сейчас без электричества невозможно представить жизнь. Это не только свет и обогреватели, но и вся электронная аппаратура начиная с самых первых электронных ламп и заканчивая мобильными телефонами и компьютерами. Их работа описывается самыми разными, иногда очень сложными формулами. Но даже самые сложные законы электротехники и электроники в основе своей имеют законы электротехники, которые в институтах, техникумах и училищах изучает предмет «Теоретические основы электротехники» (ТОЭ).

Основные законы электротехники

  • Закон Ома
  • Закон Джоуля - Ленца
  • Первый закон Кирхгофа

Закон Ома - с этого закона начинается изучение ТОЭ и без него не может обойтись ни один электрик. Он гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению Это значит, что чем выше напряжение, поданное на сопротивление, электродвигатель, конденсатор или катушку (при соблюдении других условий неизменными), тем выше ток, протекающий по цепи. И наоборот, чем выше сопротивление, тем ниже ток.

Закон Джоуля - Ленца . С помощью этого закона можно определить количество тепла, выделившегося на нагревателе, кабеле, мощность электродвигателя или другие виды работ, выполненных электрическим током. Этот закон гласит, что количество тепла, выделяемого при протекании электрического тока по проводнику, прямо пропорциональна квадрату силы тока, сопротивлению этого проводника и времени протекания тока. С помощью этого закона определяется фактическая мощность электродвигателей, а также на основе этого закона работает электросчётчик, по которому мы платим за потреблённую электроэнергию.

Первый закон Кирхгофа . С его помощью рассчитываются кабеля и автоматы защиты при расчёте схем электроснабжения. Он гласит, что сумма токов, приходящих в любой узел равна сумме токов, уходящих из этого узла. На практике приходит один кабель из источника питания, а уходит один или несколько.

Второй закон Кирхгофа . Применяется при подключении нескольких нагрузок последовательно или нагрузки и длинного кобеля. Он также применим при подключении не от стационарного источника питания, а от аккумулятора. Он гласит, что в замкнутой цепи сумма всех падений напряжений и всех ЭДС равна 0.

С чего начать изучение электротехники

Лучше всего изучать электротехнику на специальных курсах или в учебных заведениях. Кроме возможности общаться с преподавателями, вы можете воспользоваться материальной базой учебного заведения для практических занятий. Учебное заведение также выдаёт документ, который будет необходим при устройстве на работу.

Если вы решили изучать электротехнику самостоятельно или вам необходим дополнительный материал для занятий, то есть много сайтов, на которых можно изучить и скачать на компьютер или телефон необходимые материалы.

Видеоуроки

В интернете есть много видеоматериалов, помогающих овладеть основами электротехники. Все видеоролики можно как смотреть онлайн, так и скачать с помощью специальных программ.

Видеоуроки электрика - очень много материалов, рассказывающих о разных практических вопросах, с которыми может столкнуться начинающий электрик, о программах, с которыми приходится работать и об аппаратуре, устанавливаемой в жилых помещениях.

Основы теории электротехники - здесь находятся видеоуроки, наглядно объясняющие основные законы электротехники Общая длительность всех уроков около 3 часов.

    ноль и фаза , схемы подключения лампочек, выключателей, розеток. Виды инструмента для электромонтажа;
  1. Виды материалов для электромонтажа, сборка электрической цепи;
  2. Подключение выключателя и параллельное соединение;
  3. Монтаж электрической цепи с двухклавишным выключателем. Модель электроснабжения помещения;
  4. Модель электроснабжения помещения с выключателем. Основы техники безопасности.

Книги

Самым лучшим советчиком всегда являлась книга . Раньше необходимо было брать книгу в библиотеке, у знакомых или покупать. Сейчас в интернете можно найти и скачать самые разные книги, необходимые начинающему или опытному электромонтёру. В отличие от видеоуроков, где можно посмотреть, как выполняется то или иное действие, в книге можно держать рядом во время выполнения работы. В книге могут быть справочные материалы, которые не поместятся в видеоурок (как в школе - учитель рассказывает урок, описанный в учебнике, и эти формы обучения дополняют друг друга).

Есть сайты с большим количеством электротехнической литературы по самым разным вопросам - от теории до справочных материалов. На всех этих сайтах нужную книгу можно скачать на компьютер, а позже читать с любого устройства.

Например ,

mexalib - разного рода литература, в том числе и по электротехнике

книги для электрика - на этом сайте много советов для начинающего электротехника

электроспец - сайт для начинающих электриков и профессионалов

Библиотека электрика - много разных книг в основном для профессионалов

Онлайн-учебники

Кроме этого, в интернете ест онлайн-учебники по электротехнике и электронике с интерактивным оглавлением.

Это такие, как:

Начальный курс электрика - учебное пособие по электротехнике

Базовые понятия

Электроника для начинающих - начальный курс и основы электроники

Техника безопасности

Главное при выполнении электротехнических работ, это соблюдение техники безопасности. Если неправильная работа может привести к выходу из строя оборудования, то несоблюдение техники безопасности - к травмам, инвалидности или летальному исходу.

Главные правила - это не прикасаться к проводам, находящимся под напряжением, голыми руками, работать инструментом с изолированными ручками и при отключении питания вывешивать плакат «не включать, работают люди». Для более подробного изучения этого вопроса нужно взять книгу «Правила техники безопасности при электромонтажных и наладочных работах».

Видео версия статьи:

Начнем пожалуй с понятия электричества. Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. В качестве частиц могут выступать свободные электроны металла, если ток течет по металлическому проводу, или ионы, если ток течет в газе или жидкости.
Есть ещё ток в полупроводниках, но это отдельная тема для разговора. Как пример можно привести высоковольтный трансформатор из микроволновки – сначала электроны бегут по проводам, затем ионы движутся между проводами, соответственно сначала ток идет через металл, а потом через воздух. Вещество называются проводником или полупроводником, если в нём есть частицы, способные переносить электрический заряд. Если таких частиц нет, то такое вещество называется диэлектриком, оно не проводит электричество. Заряженные частицы несут на себе электрический заряд, который измеряется обозначается q в кулонах.
Единица измерения силы тока называется Ампер и обозначается буковой I, ток величиной в 1 Ампер образуется при прохождении через точку электрической цепи заряда величиной 1 Кулон за 1 секунду, то есть грубо говоря сила тока измеряется в кулонах секунду. И по сути сила тока это количество электричества, протекающего за единицу времени через поперечное сечение проводника. Чем больше заряженных частиц бежит по проводу, тем соответственно больше ток.
Чтобы заставить заряженные частицы перемещаться от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Напряжение измеряется в вольтах и обозначается буквой V или U. Чтобы получить напряжение величиной 1 Вольт нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж. Согласен, немного непонятно.

Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под действием силы тяжести вытекает через трубу. Пусть вода – это электрический заряд, высота водяного столба – это напряжение, а скорость потока воды – это электрический ток. Точнее не скорость потока, а количество вытекающей за секунду воды. Вы понимаете, что чем выше уровень воды, тем больше будет давление внизу А чем выше давление внизу, тем больше воды вытечет через трубу, потому что скорость будет выше.. Аналогично чем выше напряжение, тем больший ток будет течь в цепи.

Зависимость между всеми тремя рассмотренными величинами в цепи постоянного тока определяет закон ома, который выражается вот такой формулой, и звучит как сила тока в цепи прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению. Чем больше сопротивление, тем меньше ток, и наоборот.

Добавлю ещё пару слов про сопротивление. Его можно измерить, а можно посчитать. Допустим у нас есть проводник, имеющий известную длину и площадь поперечного сечения. Квадратный, круглый, неважно. Разные вещества имеют разное удельное сопротивление, и для нашего воображаемого проводника существует вот такая формула, определяющая зависимость между длиной, площадью поперечного сечения и удельным сопротивлением. Удельное сопротивление веществ можно найти в интернете в виде таблиц.
Можно опять же провести аналогию с водой: вода течёт по трубе, пусть труба имеет удельную шершавость. Логично предположить, что чем длиннее и уже труба, тем меньше воды будет по ней протекать за единицу времени. Видите, как всё просто? Формулу даже запоминать не нужно, достаточно представить себе трубу с водой.
Что касается измерения сопротивления, то нужен прибор, омметр. В наше время более популярны универсальные приборы – мультиметры, они измеряют и сопротивление, и ток, и напряжение, и ещё кучу всего. Давайте проведём эксперимент. Я возьму отрезок нихромовой проволоки известной длины и площади сечения, найду удельное сопротивление на сайте где я её купил и посчитаю сопротивление. Теперь этот же кусочек измерю при помощи прибора. Для такого маленького сопротивления мне придется вычесть сопротивление щупов моего прибора, которое равно 0.8 Ом. Вот так вот!
Шкала мультиметра разбита по размерам измеряемых величин, это сделано для более высокой точности измерения. Если я хочу измерить резистор с номиналом 100 кОм, я ставлю рукоятку на большее ближайшее сопротивление. В моём случае это 200 килоом. Если хочу измерить 1 килоом, то ставлю на 2 ком. Это справедливо для измерения остальных величин. То есть на шкале отложены пределы измерения, в который нужно попасть.
Давайте продолжим развлекаться с мультиметром и попробуем измерить остальные изученные величины. Возьму несколько разных источников постоянного тока. Пусть это будет блок питания на 12 вольт, юсб порт и трансформатор, который в своей молодости сделал мой дед.
Напряжение на этих источниках мы можем измерить прямо сейчас, подключив вольтметр параллельно, то есть непосредственно к плюсу и к минусу источников. С напряжением всё понятно, его можно взять и измерить. А вот чтобы измерить силу тока, нужно создать электрическую цепь, по которой будет протекать ток. В электрической цепи обязательно должен быть потребитель, или нагрузка. Давайте подключим потребитель к каждому источнику. Кусочек светодиодной ленты, моторчик и резистор на (160 ом).
Давайте измерим ток, протекающий в цепях. Для этого переключаю мультиметр в режим измерения силы тока и переключаю щуп во вход для тока. Амперметр подключается в цепь последовательно измеряемому объекту. Вот схема, её тоже следует помнить и не путать с подключением вольтметра. Кстати существует такая штуковина как токовые клещи. Они позволяют измерять силу тока в цепи без подключения непосредственно к цепи. То есть не нужно отсоединять провода, просто накидываешь их на провод и они измеряют. Ну ладно, вернёмся к нашему обычному амперметру.

Итак, я измерил все токи. Теперь мы знаем, какой ток потребляется в каждой цепи. Здесь у нас светятся светодиоды, здесь крутится моторчик а здесь…. Так стоять, а че делает резистор? Он не поёт нам песни, не освещает комнату и не вращает никакой механизм. Так на что он тратит целых 90 миллиампер? Так не пойдёт, давайте разбираться. Слышь ты! Ау, он горячий! Так вот куда расходуется энергия! А можно ли как-то посчитать, что здесь за энергия? Оказывается – можно. Закон, описывающий тепловое действие электрического тока был открыт в 19 веке двумя учеными, джеймсом джоулем и эмилием ленцем.
Закон назвали закон джоуля ленца. Он выражается вот такой формулой, и численно показывает, сколько джоулей энергии выделяется в проводнике, в котором течёт ток, за единицу времени. Из этого закона можно найти мощность, которая выделяется на этом проводнике, мощность обозначается английской буквой Р и измеряется в ваттах. Я нашёл вот такую очень крутую табличку, которая связывает все изученные нами на этот момент величины.
Таким образом у меня на столе электрическая мощность идёт на освещение, на совершение механической работы и на нагрев окружающего воздуха. Кстати именно на этом принципе работают различные нагреватели, электрочайники, фены, паяльники и прочее. Там везде стоит тоненькая спираль, которая нагревается под действием тока.

Этот момент стоит учитывать при подведении проводов к нагрузке, то есть прокладка проводки к розеткам по квартире тоже входит в это понятие. Если вы возьмете для подведения к розетке слишком тонкий провод и подключите в эту розетку компьютер, чайник и микроволновку, то провод может нагреться вплоть до возникновения пожара. Поэтому есть вот такая табличка, которая связывает площадь поперечного сечения проводов с максимальной мощностью, которая по этим проводам будет идти. Если вздумаете тянуть провода – не забудьте об этом.

Также в рамках этого выпуска хотелось бы напомнить особенности параллельного и последовательного соединения потребителей тока. При последовательном соединении сила тока одинакова на всех потребителях, напряжение разделилось на части, а общее сопротивление потребителей представляет собой сумму всех сопротивлений. При параллельном соединении напряжение на всех потребителях одинаково, сила тока разделилась, а общее сопротивление вычисляется вот по такой формуле.
Из этого вытекает один очень интересный момент, который можно использовать для измерения силы тока. Допустим нужно измерить силу тока в цепи около 2 ампер. Амперметр с этой задачей не справляется, поэтому можно использовать закон ома в чистом виде. Знаем, что сила тока одинакова при последовательном соединении. Возьмём резистор с очень маленьким сопротивлением и вставим его последовательно нагрузке. Измерим на нём напряжение. Теперь, пользуясь законом ома, найдём силу тока. Как видите, она совпадает с расчётом ленты. Здесь главное помнить, что этот добавочный резистор должен быть как можно меньшего сопротивления, чтобы оказывать минимальное влияние на измерения.

Есть ещё один очень важный момент, о котором нужно знать. Все источники имеют максимальный отдаваемый ток, если этот ток превысить – источник может нагреться, выйти из строя, а в худшем случае ещё и загореться. Самый благоприятный исход это когда источник имеет защиту от перегрузки по току, в таком случае он просто отключит ток. Как мы помним из закона ома, чем меньше сопротивление, тем выше ток. То есть если взять в качестве нагрузки кусок провода, то есть замкнуть источник самого на себя, то сила тока в цепи подскочит до огромных значений, это называется короткое замыкание. Если вы помните начало выпуска, то можете провести аналогию с водой. Если подставить нулевое сопротивление в закон ома то мы получим бесконечно большой ток. На практике такое конечно не происходит, потому что источник имеет внутреннее сопротивление, которое подключено последовательно. Этот закон называется закон ома для полной цепи. Таким образом ток короткого замыкания зависит от величины внутреннего сопротивления источника.
Сейчас давайте вернёмся к максимальному току, который может выдать источник. Как я уже говорил, силу тока в цепи определяет нагрузка. Многие писали мне вк и задавали примерно вот такой вопрос, я его слегка утрирую: саня, у меня есть блок питания на 12 вольт и 50 ампер. Если я подключу к нему маленький кусочек светодиодной ленты, она не сгорит? Нет, конечно же она не сгорит. 50 ампер – это максимальный ток, который способен выдать источник. Если ты подключишь к нему кусочек ленты, она возьмёт свои ну допустим 100 миллиампер, и все. Ток в цепи будет равен 100 миллиампер, и никто никуда не будет гореть. Другое дело, если возьмёшь километр светодиодной ленты и подключишь его к этому блоку питания, то ток там будет выше допустимого, и блок питания скорее всего перегреется и выйдет из строя. Запомните, именно потребитель определяет величину тока в цепи. Этот блок может выдать максимум 2 ампера, и когда я закорачиваю его на болтик, с болтиком ничего не происходит. А вот блоку питания это не нравится, он работает в экстремальных условиях. А вот если взять источник, способный выдать десятки ампер, такая ситуация не понравится уже болтику.

Давайте для примера произведём расчёт блока питания, который потребуется для питания известного отрезка светодиодной ленты. Итак, закупили мы у китайцев катушку светодиодной ленты и хотим запитать три метра этой самой ленты. Для начала идём на страницу товара и пытаемся найти, сколько ватт потребляет один метр ленты. Эту информацию я найти не смог, поэтому есть вот такая табличка. Смотрим, что у нас за лента. Диоды 5050, 60 штук на метр. И видим, что мощность составляет 14 ватт на метр. Я хочу 3 метра, значит мощность будет 42 ватта. Блок питания желательно брать с запасом на 30% по мощности, чтобы он не работал в критическом режиме. В итоге получаем 55 ватт. Ближайший подходящий блок питания будет на 60 ватт. Из формулы мощности выражаем силу тока и находим её, зная, что светодиоды работают при напряжении 12 вольт. Выходит, нам нужен блок с током 5 ампер. Заходим, например, на али, находим, покупаем.
Очень важно знать потребляемый ток при изготовлении всяких USB самоделок. Максимальный ток, который можно взять от USB, составляет 500 миллиампер, и его лучше не превышать.
И напоследок коротенько о технике безопасности. Здесь вы можете видеть, до каких значений электричество считается неопасным для жизни человека.