Работ различных современных средств связи невозможна без таких устройств приема и передачи радиоволн, как коротковолновые антенны (сокращенно кв антенны). Востребованность и популярность данных устройств обусловлены большим разнообразием их видов, а также возможностью самостоятельного изготовления. Особенно распространены они в любительской радиосвязи с разрешенным диапазоном для вещания от 1,81 до 29,7 МГц.

Диполь Герца

Диполь Герца (полуволновой вибратор) – простейшее устройство данного вида, состоящее из вертикальной опоры и двух плеч общей длиной 1/2 от принимаемой или излучаемой волны. Так, при длине волны 160 метров длина двух плеч диполя должна быть 80 метров. При монтаже на крыше высотного дома вертикальные стойки не используют, закрепляя плечи диполя на коротких опорах.

Укороченный диполь Герца

Такая антенна кв отличается от предыдущей более короткой длиной плеч (до 1/5 от длины принимаемой или излучаемой волны), а также установленными на них катушками индуктивности и концевыми емкостными нагрузками в виде металлических дисков или «звездочек» из проводов или проволоки.

Спиральные антенны

Классическое устройство данного вида («Спираль Тесла») состоит из двух спиралей, расположенных на крестовинах, соединенных между собой перемычкой (траверсом).

Питание антенны

Соединяют такое устройство с трансивером (приемо-передающей аппаратурой) толстым коаксиальным кабелем с волновым сопротивлением 50-75 Ом.

Сборка антенны

Собирают небольшое устройство данного вида, наматывая две плоские спирали диаметром 90 см на каркас из полипропиленовой трубы, состоящий из двух крестовин и соединяющей их 90-92-сантиметровой перекладины (траверса). В качестве материала для спиралей используют одножильный изолированный медный провод диаметром 1,5 мм.

Трансформатор

Для данного устройства используют воздушный трансформатор с рабочим диапазоном волн от 10 до 100-160 метров. Делают его, наматывая на полый 140-миллиметровый каркас диаметром 25 мм 16 витков сдвоенного провода толщиной 1,5 мм. Длина намотки провода при этом должна быть 95-100 мм.

Настройка антенны

Процесс настройки включает в себя следующие операции:

  • Настройка КВС (коэффициента стоячей волны) – выполняется при помощи специального прибора или зажимами-крокодильчиками, фиксируемыми на спиралях вибратора и перемещаемыми по ним, что приводит к изменению положения точки питания. Полученное в процессе настройки на найденной частоте значение КВС должно быть в пределах 1,0-1,2.
  • Настройка частоты резонанса – осуществляется изменением длины проводов вибраторов с помощью тех же зажимов, что и в предыдущем пункте. Настройку производят, передвигая зажимы по изолированному проводу спиралей.

Усиление антенны, полоса пропускания и угол излучения

Размещают спиральную передающую антенну горизонтально на высоте, равной 1/8 длины излучаемой ею волны.

Магнитные антенны

Наиболее распространенной конструкцией кв антенны является магнитная-рамочная петля (magnetic loop), состоящая из:

  • Дюралюминиевого или медного излучающего кольца диаметром 25-80 см;
  • Петли связи, диаметр которой в 5 раз меньше, чем у излучающего кольца;
  • Питающего кабеля (фидера) с волновым сопротивлением 50 Ом;
  • Мощного конденсатора настройки резонансной частоты.

Устанавливают такие простые самодельные передающие устройства как на высоких мачтах, крышах многоэтажек, так и на балконах или подоконниках квартир. Благодаря настроечному конденсатору, способному работать при мощности до 100 Вт, такие радиолюбительские коротковолновые антенны работают в диапазонах от 1,8 до 27 Мгц.

Емкостные антенны

Многодиапазонная антенна

Многодиапазонная антенна – устройство, позволяющее производить вещание во всех разрешенных для любителей диапазонах коротких волн. Благодаря данному свойству, многодиапазонки приобрели большую популярность и распространение.

Одна из многодиапазонок типа UA1DZ имеет следующую конструкцию:

  • Вибратор длиной 9,3 м
  • З-х метровая подставка;
  • 4-5 оттяжек;
  • 10-14 дополнительных гибких противовесов-оттяжек длиной 9,4 м.

Соединение таких антенн и передатчиков производят при помощи коаксиального кабеля на 50 Ом.

Основными недостатками, которыми обладают такие многодиапазонные конструкции, являются их громоздкость, высокая парусность и риск поражения молнией при установке на крыше высотного дома или другой многоэтажной постройки.

Вертикальная антенна (Ground Plane)

Вертикальные антенны типа Ground Plane – устройства, предназначенные для вещания на диапазонах от 14 до 24-28 Мгц. Основными составляющими таких вертикальных кв антенн являются 2-х метровая мачта, дюралевый вибратор длиной от 2 до 5 метров, 4-5 противовесов длиной 2,5-3 метра и питающий коаксиальный 50-ти омный кабель.

Устанавливают их как на крышах высоток, так и на фронтонах частных домов.

Укороченная дипольная антенна

Самое простое устройство данного вида на 7 мгц представляет собой конструкцию, состоящую из следующих частей:

  • Разделенный на два 3-х метровых плеча проволочный вибратор с изоляторами и оттяжками на концах. В качестве изоляторов используют небольшие кусочки текстолита, для оттяжек применяют прочный бельевой капроновый шнур.
  • Две удлинительных 140-ка витковых катушки из медного провода толщиной 0,5-0,6 мм;
  • Центральный узел с трансформатором (балуном);
  • Фидер – питающий коаксиальный кабель на 50 Ом.

Используют такую укороченную диполь, как в стационарных, так и в полевых условиях, закрепляя ее на высоте от 3 до 4 метров.

На заметку. Для того чтобы произвести настройку такого устройства по резонансу, необходимо равномерно укорачивать длину расположенных горизонтальных или под углом плеч вибратора. После изменения длины плеча укорачивающая ее оттяжка крепится к ближайшему дереву или другой устойчивой опоре.

Вертикальная кв антенна своими руками

Наиболее популярны для самостоятельного изготовления такие передающие коротковолновые устройства, как вертикальные антенны.

Наиболее простую и эффективную из них делают следующим образом:

  1. В землю вкапывают деревянный столбик высотой 2,5-3 метра;
  2. На вкопанном столбике при помощи саморезов закрепляют распределительную коробку;
  3. В закрепленной коробке помещают высокочастотный дроссель – катушку с намотанными на нее витками изолированного коаксиального кабеля;
  4. К выходу дросселя подключают двухжильный многопроволочный медный кабель сечением 2 мм;
  5. Провод продевают через пропускные кольца дешевого 6-ти метрового углепластикового удилища;
  6. Конец провода закрепляют на вершинке удилища при помощи обычного пластикового хомута-стяжки;
  7. Посередине удилища закрепляют круглую площадку с проволочными оттяжками;
  8. На верхней части столба крепят 2 клипсы и один хомут-держатель (КТР) для полипропиленовых труб диаметром 32 мм;
  9. При помощи клипс и держателя удилище с излучателем (продетым сквозь пропускные кольца проводом) закрепляется на столбе;
  10. Оттяжками мачта с излучателем выравнивается и надежно фиксируется. Оттяжки при этом закрепляются на устойчивых, расположенных рядом столбах, деревьях, вкрученных в несущие конструкции зданий и капитальных построек крюках.

Питающий провод для кв антенн такого вида используют с волновым сопротивлением 50 Ом.

Обслуживание такого устройства сводится к периодической проверке целостности излучателя путем его прозвонки мультиметром, замене сломанных ветром колен мачты, корректировке натяжения оттяжек.

Выбор первого кв трансивера

При выборе первого передающего устройства (трансивера) начинающим радиолюбителям необходимо учитывать:

  • Габариты и вес – радиостанция должна иметь такие размеры и вес, чтобы ее можно достаточно легко переносить в руках или походном рюкзаке.
  • Функционал – для начинающего радиолюбителя достаточно трансивера, имеющего небольшое количество основных настроек (резонансная частота, мощность, КСВ);
  • Надежность и наличие гарантии – как и любая другая аппаратура, коротковолновая радиостанция должна иметь гарантийный срок обслуживания;
  • Возможность программирования аппаратуры с использованием персонального компьютера.

Не рекомендуют начинающим радиолюбителям приобретать дорогостоящие и очень сложные в эксплуатации, обслуживании коротковолновые радиостанции. Новичку, заинтересовавшемуся радиолюбительством, будет очень тяжело разобраться в такой аппаратуре, при утрате интереса к данному делу продажа такой дорогостоящей радиостанции за ту же сумму, что она была куплена, будет очень затруднительной.

Другие конструктивы антенн

Из других конструкций антенн кв диапазона внимание заслуживает вертикальный спиральный полуволновой вибратор для волн длиной 80 метров, состоящий из:

  • 120-ти сантиметровой спирали из медного изолированного провода диаметром 1-1,5 мм;
  • Траверса высотой 150 см;
  • Противовеса длиной не менее 80 см;
  • Согласующего устройства;
  • Высокочастотного автотрансформатора;
  • Питающей линии из коаксиального кабеля с волновым сопротивлением 50 Ом.

Применяют такие вертикальные антенны в условиях ограниченного пространства небольших приусадебных участков, на крышах многоэтажных домов и других высотных построек.

Простейшие самодельные антенны

Самыми простыми в изготовлении коротковолновыми устройствами из описанных выше являются:

  • Штыревая антенна;
  • Полноразмерная диполь.

Изготовить их можно самостоятельно из подручных недорогих материалов, не используя при этом специальные инструменты и оборудование.

Немного слов о коротковолновиках

Коротковолновики – радиолюбители, занимающиеся вещанием в коротковолновом диапазоне. Занимающиеся конструированием, изготовлением и ремонтом передающих устройств люди проводят сеансы связи из различных уголков планеты. При этом для каждого из них достижением считается самая дальняя точка, с которой был проведен сеанс радиосвязи.

На заметку. Согласно действующему законодательству РФ, для радиолюбителей-коротковолновиков доступно вещание на 10 коротковолновых диапазонах со следующей длиной волн: 2200 м, 160 м, 80 м, 40 м, 30 м, 20 м, 16 м, 15 м, 12 м, 10 м. Использование высокочастотных диапазонов запрещено.

Антенны мобильных телефонов

Еще не так давно во многих моделях мобильных телефонов использовались достаточно крупные для данных устройств направленные антенны. Однако по мере развития телекоммуникационных технологий работа мобильных средств связи постепенно перешла из коротковолнового в вч диапазоны до 2500 МГц. Такая рабочая частота соответствует длине волны всего 12 см, благодаря чему для проведения эффективных сеансов связи достаточно небольшого встроенного в телефон передающего устройства.

Таким образом, правильно собранная, установленная и настроенная коротковолновая антенна – это залог устойчивой и качественной связи с живущими в самых отдаленных уголках планеты радиолюбителями. Благодаря большому разнообразию конструкций и моделей, собираемое из подручных материалов такое передающее устройство может быть установлено практически в любом доступном месте: на крыше, балконе и даже внутри жилого помещения.

Видео

Каждая антенна имеет свою собственную резонансную частоту, на которой она излучает или принимает максимум энергии. На этой частоте полковое сопротивление антенны имеет активны и характер. Линия, подводящая энергию к антенне на резонансной частоте, должна иметь малые потери и не должна излучать. Это достигается при условии, когда входное сопротивление антенны paвно волновому сопротивлению линии, а последнее - входному сопротивлению приемника или передатчика.

На практике входное сопротивление антенны часто отличается от волнового сопротивления линии. Поэтому для согласования антенны с линией приходится использовать специальные согласующие приспособления. Чем сложней конструкция антенны, тем труднее бывает учесть все факторы, влияющие на входное сопротивление антенны, и проверку настройки антенны приходится производить с помощью тех или иных приборов.

Помимо индикаторов напряжения, радиолюбители применяют различные индикаторы тока. Большинство индикаторов рассчитаны на измерения в открытых линиях. Коэффициент стоячей волны определяется отношением напряжения (или тока) в пучности, к напряжению (или току) в узле.

На рис. 1 показана принципиальная схема подобного моста. Величины сопротивлений R1 и R3 равны между собой.

Если линия согласована правильно и сопротивление R3 равно волновому сопротивлению линии, мост будет сбалансирован, и высокочастотный вольтметр, включенный в диагональ моста, покажет нуль.

Однако если линия не согласована с нагрузкой, показания вольтметра не будут равны нулю. Зависимость между коэффициентом стоячей волны и показаниями вольтметра показана на рис- 2.

Передающая антенна считается хорошей, если коэффициент стоячей волны не превышает 2. Объясняется это тем, что уменьшение мощности в нагрузке с изменением величины нагрузочного сопротивления происходит не резко, и поэтому некоторое отступление от режима бегущей волны допустимо.

Принципиальная схема моста для измерения коэффициента стоячих волн приведена на рис, 3. Вид на монтаж этого прибора показан на рис. 4 и 5. Сопротивления R1, R2 и R3 совместно с волновым сопротивлением фидера образуют мост. Фидер подключают к гнезду “Линия”. К коаксиальному гнезду "Вход" подводят напряжение высокой частоты от генератора. Колебания, подводимые к мосту, выпрямляются германиевым диодом. Постоянное напряжена измеряется с помощью вольтметра включенного в гнезда "+Вход" и "-" .

Прибор смонтирован в футляре размерами 75х50х45 мм.

Затем включают в коаксиальное гнездо “Линия” безиндукционное сопротивление 75 oм. При этом вольтметр, включенный в диагональ моста, должен показывать нуль на всех частотах.

На рис 6 показана принципиальная схема моста, позволяющего сделать непосредственный отсчет величины измеряемого волнового сопротивления.

На рис. 7 показан вид на монтаж этого прибора. Мост снабжен собственным индикатором чувствительностью в 100 мка

В качестве переменного сопротивления использовано сопротивление типа СП, у которого снята укропная крышка. Так как обычно волновые сопротивления имеют величину от 30 до 300 ом, в большинстве случаев можно применить сопротивление R3 величиной в 680 ом. Если нужно измерить более высокое волновое сопротивление, то последовательно с переменным сопротивлением R3 включают дополнительное бзиндукционное сопротивление.

При измерениях на коротких волнах. т. е. до частот 30 Мггц, нет необходимости в экранировке сопротивления R3. При более высоких частотах сопротивление Р3 экранируется с помощью поперечной перегородки. Ось сопротивления удлиняется с помощью втулки из изолирующего материала.

При постройке прибора необходимо следить за тем, чтобы соединительные провода были по возможности короче и имели по возможности одинаковую длину, с тем чтобы их собственные емкости и индуктивности были минимальными и одинаковыми.

С. Хазан. "Радио" N5, 1956г.

При изготовлении малогабаритных радиопередающих устройств (носимые радиостанции, радиомикрофоны и т. д.) для получения максимальной эффективности требуется настройка антенны, подключенной непосредственно к выходу передающего тракта. Одним из критериев при настройке антенны является получение максимальной напряженности электромагнитного поля в дальней зоне. Для оценки напряженности поля можно собрать простой детектор электромагнитного излучения, схема которого приведена на рис. 1.

В.Ефремов, г.Ессентуки,
Для эффективной работы любой передающей радиостанции необходимо свести к минимуму потери ВЧ энергии, неизбежные при ее передаче от радиопередающего устройства (ТХ) к антенне по фидерной линии. Это возможно лишь при высоком качестве согласований и, следовательно, при наличии прибора, позволяющего контролировать их с достаточной точностью. На практике наибольшее распространение получили измерители, построенные по схемам либо мостового типа, либо с применением измерительных токовых трансформаторов или направленных ответвителей различных конструкций. Все они в определенных случаях имеют как достоинства, так и недостатки, что достаточно полно описано в литературе [ 1, 2, 3,4]. Учитывая это, желательно иметь достаточно универсальный измеритель КСВ, а также эквивалент нагрузки в его составе (встроенный в прибор).

Именно такими качествами обладает универсальный измеритель КСВ, схема которого показана на рис. 1.

А. Титов, г. Томск PA 7/8’2009 Измерители коэффициента стоячей волны напряжения (КСВН) используются для определения качества согласования между собой отдельных узлов радиотехнических трактов. В связи с широким развитием систем кабельного телевидения очень важно знать его значение в каждом конкретном случае. Для измерения КСВН и предназначен предлагаемый прибор.

Измеритель проходящей мощности и КСВ Известно, что успешная работа в эфире во многом зависит от эффективности антенны любительской радиостанции. Существует большое разнообразие коротковолновых антенн. Начинающие радиолюбители обычно используют наиболее простые, не требующие больших затрат. Более опытные устанавливают на высоких мачтах многоэлементные направленные антенны с дистанционным управлением положением главного лепестка диаграммы направленности. Но любая антенна будет давать хорошие результаты, лишь когда правильно настроена. Существенную помощь радиолюбителю в настройке антенны окажет предлагаемый прибор.

Обычно в любительских конструкциях используется измеритель КСВ на базе направленного ответвителя, имеющий переключатель падающей и отраженной волны и регулятор чувствительности. При настройке передатчика приходится производить большое количество манипуляций не только с органами регулировки П-контура но еще и КСВ-метра. Описываемое ниже устройство позволяет упростить процедуру согласования передатчика и нагрузки.

Прибор (рис.1) позволяет измерить КСВ и отдаваемую в нагрузку мощность в фидерах 50 или 75 Ом.

Л. НИКОЛЬСКИЙ, Б. ТАТАРКО, г. Тверь При настройке антенн в радиолюбительской практике используют мостовые измерители двух типов: неуравновешенные и уравновешенные. Первые известны как КСВ-метры и получили относительно широкое распространение. Вторые в литературе обычно называют антенноскопами. Они встречаются реже, хотя позволяют получить об антенно-фидерном тракте радиостанции некоторую дополнительную (по сравнению с КСВ-метрами) информацию, анализ которой может облегчить его настройку.

Статья написана для новичков, тех, кто первый раз собирается настроить антенну для работы на нужном ему канале (частоте). Кто уже неоднократно занимался настройкой антенн, вряд ли найдут в статье что-то полезное для себя.
Статья описывает основные моменты настройки простых однодиапазонных антенн - автомобильных врезных, на магнитном основании, базовых 1/4 ГП, 1/2 (полуволновок), 5/8 (пять восьмых).

Что нужно для настройки антенны

КСВ-метр
Прибор, который показывает соотношение прямой (поступающей от радиостанции в антенну) и обратной (отражающейся от антенны) волны в кабеле.
Косвенно этот прибор показывает, что выходное волновое сопротивление радиостанции равно сопротивлению кабеля, а оно равно сопротивлению антенны. О том, что такое волновое сопротивление и чем оно отличается от того, которое показывает обычный тестер, можно прочитать в статье: .
КСВ-метр (измеритель КСВ) можно приобрести (цена вопроса около 1000 рублей) или на время попросить у кого ни будь из знакомых, у кого он имеется.

Радиостанция
КСВ-метр не работает без радиостанции.
Чем больше "сеток" есть в радиостанции, чем по более широкому диапазону частот может перестраиваться радиостанция, тем легче будет настроить антенну на нужную частоту (канал).
Имея радиостанцию с 40 каналами на 27 МГц настроить антенну можно, но очень сложно, с радиостанцией, которая имеет 400 или 600 каналов, это сделать намного проще.

Рулетка или линейка
Потребуется для измерения полотна антенны и определения на сколько сантиметров укорачивать или удлинять.
В принципе можно обойтись и без рулетки или линейки и выполнит настройку просто пошагово, по чуть-чуть укорачивая или удлиняя полотно антенны.

Основные положения при настройке антенны

Антенну нужно настраивать по месту, где она будет потом стоять.
То есть антенну нужно настраивать в тех условиях в которых она далее будет эксплуатироваться, особенно если на расстоянии ближе чем 2-3 длины волны (длина волны = 300/частота в МГц (для 27МГц длина волны примерно 11 метров)) к ней находятся какие то токопроводящие предметы параллельные полотну антенны.
Если это базовая антенна, то для неё уже надо подготовить мачту, которая позволяет снимать и устанавливать антенну, поднимать и опускать всё это для настройки и технического обслуживания.
Если это автомобильная антенна, то автомобиль следует запарковать так, что бы рядом была именно та обстановка, которая будет при езде на нём в момент работы радиостанции, то есть на расстоянии порядка метров 5-10 стояли другие машины, но с другой стороны рядом не должно быть стен железобетонных домов, гаражей, нельзя стоять внутри железного гаража или ангара. В момент измерений при настройке у автомобиля должны быть закрыты двери, багажник. Не стоит самому стоять рядом с машиной, тело человека поглощает радиоволны и тем самым вносит потери, влияет на работу антенны.
На расстоянии 2-3 длины волны от антенны не должно быть движущихся токопроводящих объектов.
Все соединения приборов должны быть надёжными.
Не стоит держать всё "на весу", руками прижимая к контактам кое-как зачищенные куски кабеля, которые вот-вот выпадут из разъёмов или замкнут.
Надёжные соединения нужны, что бы показания прибора не изменялись как им вздумается, не плавали и были повторяемы. Если показания не повторяемы, то это уже не показания приборов, а погода на Марсе в момент поедания сникерса и ориентироваться на такие показания невозможно.

Как пользоваться КСВ-метром

Подключаем кабель к антенне, другой конец кабеля к КСВ-метру, к разъёму "ANT", разъём КСВ-метра "TRANS" подключаем к антенному разъёму радиостанции.
Включаем радиостанцию и устанавливаем частоту, на которой будем производить измерение КСВ.
Если есть переключатель SWR/PWR переводим в положение SWR.
Переключатель на КСВ-метре "FWD/REF" в положение FWD.
Нажимаем на передачу на радиостанции и устанавливаем регулятором торчащим из КСВ метра стрелку на конец шкалы. Отпускаем передачу.
Устанавливаем переключатель "FWD/REF" в положение REF.
Нажимаем на передачу и отсчитываем на индикаторе показание КСВ. На большинстве КСВ метров чем меньше отклониться стрелка тем меньше КСВ, если не отклоняется вообще, то КСВ = 1 или прибор дохлый. Если на всех частотах, в положении REF стрелка не отклоняется, то либо у вас вместо антенны подключен хороший эквивалент нагрузки, либо прибор умер, но не будем о грустном.

Настройка антенны - шаг за шагом

Соединяем всё для измерения КСВ, как было сказано выше, антенну в рабочее положение.
- Устанавливаем на радиостанции самую высокую частоту, которую способна выдавать радиостанция, например сетка G канал 40 (точнее смотрите в инструкции к радиостанции).
- Измеряем КСВ, двигаясь вниз по частотам примерно через 20 каналов (200 кГц), запоминаем, на какой частоте (канале, сетке) был минимум КСВ и какой КСВ был в минимуме.

Теперь есть несколько вариантов:
КСВ везде большой, прибор "шкалит".
Или вы не так пользуетесь КСВ метром или у вас обрыв в кабеле или антенне.

КСВ плавно, по мере уменьшения частоты падает, но до минимума мы не дошли.
Ваша антенна слишком длинная. Надо укорачивать. В укорочении стоит помнить золотое правило: "семь раз отмерь, один раз отрежь". Укороченное прилепить назад в больинстве случаев невозможно, так что укорачиваем по чуть-чуть, для антенн Си-Би диапазона 27МГц чуть-чуть это примерно 1 сантиметр, для LPD или PMR антенн диапазона 433-446МГц чуть-чуть это 2 миллиметра.

КСВ по мере уменьшения частоты возрастает.
Ваша антенна слишком короткая. Антенну нужно удлинить. Насколько именно - лучше процентов на 20, а потом укорачивать.

КСВ по мере уменьшения частоты падал, на некоторой частоте он стал минимален, а потом, по мере дальнейшего уменьшения частоты снова стал возрастать.
Это наиболее частый случай.
Означает такое поведение, что всё нормально, антенна работает в нужном диапазоне, осталось только подстроить её на нужную частоту (канал).
Если у вас этот случай, то желательно найти точно на каком канале минимум КСВ.

Если частота на которой был минимум КСВ ниже чем нужная вам, то антенну надо чуть-чуть укоротить, буквально по 5 миллиметров, если речь идёт о диапазоне 27МГц, после каждого укорачивания смотреть где сейчас минимум КСВ, и укорачивать так до тех пор, пока минимум КСВ не окажется на нужной вам частоте.

Если частота на которой был минимум КСВ выше нужной вам, то антенну нужно удлинить.

Что делать, если минимальный КСВ на нужной частоте, но это минимальное значение всё ещё большое

Это говорит о том, что антенна работает не совсем так, как задумано производителем или антенна дрянь, впрочем не нужно сразу о грустном.
Если это автомобильная врезная антенна, то может быть ей "не хватает массы", то есть контакт с массой плохой.
Если это автомобильная антенна на магните, то ей тоже может "не хватать массы", например слой краски слишком толстый.
Или ваша автомобильная антенна стоит там где не следует ставить - рядом с элементами металлического багажника на крыше, рядом с дополнительным светом который вы навесили на багажник, вы её вообще примагнитили на капот или багажник, бампер или диск колеса.
Может быть, вы закрепили врезную антенну на алюминиевые полозья багажника, который у вас на крыше, но багажник оказался не алюминиевый а пластиковый или не имеет надёжного контакта с массой автомобиля, или недостаточно длинный и широкий, что бы выполнять роль массы для антенны.

Если антенна на магнитном основании, попробуйте поискать другое место, куда её "пришлёпнуть", попробуйте с угла крыши, по центру крыши, с другого угла.
Токи радиочастот текут не совсем так как постоянный ток, там где тестер покажет отличный контакт, для радиочастоты это может оказаться "узким местом".

Если антенна врезная, посмотрите, хорошо ли вы зачистили от краски место, куда крепится контакт массы антенны.
Если врезную антенну вы закрепили на багажнике или каком то крепеже на водосток, попробуйте улучшить контакт с массой. Бывали случаи, когда автор статьи брал 2 куска провода 0,5мм толщиной без изоляции, наматывал на кронштейн на котором была закреплена врезная антенна висящая на водостоке или багажнике, бросал их в разные углы крыши автомобиля по водостокам и КСВ с 3 уменьшалось до 1, то есть антенна начинала идеально работать (естественно сигнал в эфире при этом тоже улучшался).
Бросать дополнительные провода, драть краску а потом лить герметик или искать иные пути улучшения массы или точки установки - решать вам, это ваша антенна и ваша машина.

Если у вас не автомобильный, а базовый вариант антенны, то лечение тут собственно точно такое, а именно: может нужно больше "массы", а может надо лезть в конструкцию антенны с паяльником.
Для начала убеждаемся, что достаточно массы - труба основание, она же главный противовес, масса для антенн типа 5/8 (пять восьмых) и 1/2 (пол волны) должна быть не меньше 1/4 длины волны, то есть для 27МГц это порядка 2 метра 75 сантиметров. Больше - лучше; меньше - придётся удлинять проводом, брошенным по крыше.
Хотя иногда бывает и так, что всё сделано хорошо, а антенна не настраивается, так было у знакомого автора статьи, 1/2 не хотела настраиваться. Вроде в частоте, а КСВ не 1 и даже не 1,2 и не 1,5 - оказалось кто-то "залез в антенну" до него и отрезал виток катушки установленной внутри антенны.
Очень вероятно и то, что мешает вашей базовой антенне рядом натянутая оптика вашего провайдера или мачта коллективной антенны.

Сколько резать и для чего линейка?
Размеры антенн зависят от частоты линейно.
В случае, если антенна полноразмерная, то, насколько нужно её укоротить или удлиннить, что бы попасть в желаемую частоту, напрямую зависит от того соотношения текущей частоты, где она резонирует и желаемой частоты, где хотелось бы что бы антенна резонировала.
Поясню на примере:
у нас есть четверть, её длина пусть 267 сантиметров, резонирует она (КСВ минимален) оказался на частоте 27.0 МГц (4 канал секта C), нам хочется, что бы антенна заработала на 27.275 МГц.
Считаем К различия частот:
27.0 / 27.275 = 0.9899175068744271
Умножаем на этот К текущую длину антенны:
267 * 0.9899175068744271 = 264.3
и получаем длину, которую должна иметь антенна что бы заработать на 27.275.
Вычисляем сколько резать:
267 - 264 = 3 см.
Однако!
Резать сразу именно на 3 см не нужно. Не забываем, антенна это не только штырь, это ещё и противовесы. Влияет всё.
Так можно отпеделить порядок первой резки - то ли 3 см, то ли 5 мм.
Далее действуем пошагово.
Для приведённого выше примера, можно отрезать 1.5 см, опять найти резонанс, а исходя из полученного результата двинуться далее.

На последок, хотя наверно это нужно было написать первым:
Основные правила установки антенн
Антенну нужно ставить не ближе одной длины волны к другим токопроводящим предметам, особенно тем, которые будут параллельно антенне.
Чем выше установлена антенна, тем лучше.
Понятное дело, что для автомобильных антенн на 27МГц эти правила просто невозможно соблюсти, по этому автомобильные антенны компромиссные, по этому не требуйте от них чудес.

Если всё же вам некогда, нет желания разбираться с премудростями измерения КСВ, искать КСВ-метр, настраивать антенну самостоятельно и вы находитесь в Новосибирске, можете обратиться например сюда:


Очень часто на радиолюбительских диапазонах можно слышать дискуссии о достоинствах и недостатках тех или иных антенн. Будучи еще мальчишкой, я сильно огорчался от того, что не понимал о чём идёт речь. Сегодня, лично со мной, конечно, ситуация другая, но для тех мальчишек (или взрослых радиолюбителей), не обладающих специальными познаниями в области радиотехники вообще и антенн в частности, и для тех, кому некогда читать длинные статьи с формулами попытаюсь простыми словами рассказать об антеннах для того чтобы они смогли настроить то немногое из антенн, что обычно есть у начинающего радиолюбителя. Так сказать «на пальцах», как Чапай на картошке: -) Многие не понимают важности хорошего согласования тракта Радио-ЛинияПередачи-Антенна. Или вернее понимают важность, но совершенно не в состоянии реально оценить состояние дел. Чаще всего довольствуются показаниями встроенного КСВ метра близкими к единице. Самое неприятное при этом состоит в том, что в случае плохого положения дел, владелец радио повышает мощность до тех пор пока не станут отвечать. А сколько мощности наведется на телевизор соседа и уйдет на разогрев атмосферы - вопрос второй... Попытаемся разобраться. На картинке схематично изображена схема из трех устройств и двух переходов между ними.


Секрет в том, что КСВ метр показывает то что он "видит" на разъёме трансивера. Остальные устройства и импедансы "прячутся за спины" впереди стоящих как одна матрёшка внутри другой. И на каждом переходе и устройстве сушествуют потери обусловленные затуханием в кабеле или линии передачи и плохим КСВ. Для начала определимся с единицами измерения. Для специалистов, например в области сельского хозяйства, термин диБи ближе к медицинскому, чем к понятию "во сколько раз". Поэтому для начала таблица потерь в Дб и расшифровка в процентах, в которых все хорошо понимают. А теперь таблица физических потерь в линиях и местах соединений в зависимости от диапазона расчитанные специальной программой моделирования линий передачи а также потери при плохом согласовании..

Глядя на эту картину легко согласиться с тем, что при неблагоприятном раскладе в антенну может вообще ничего не попасть:-).

А теперь ближе к радиотехнике. Если антенна имеет реальный импеданс равный сопротивлению линии передачи, будь то коаксиальный кабель, четвертьволновой трансформатор или настроенная линия, то на разъёме трансивера КСВ-метр измерит реальный ксв антенно-фидерного устройства (АФУ). Если нет, то КСВ-метр покажет скорее согласование с кабелем, чем со всей системой. В связи с тем, что измерять КСВ непосредственно на антенне, уже поднятой над землей, очень неудобно, для связи с антенной часто применяют настроенные линии и четверть или полуволновые отрезки кабеля, также являющимися трансформаторами, которые точно "передают" на вход радио значение КСВ антенны (импеданс). Именно поэтому, если сопротивление антенны неизвестно, или её только настраивают, имеет смысл применять коаксиальный кабель определённой длины. Как расчитать длинну кабеля для определённой частоты я уже писал тут http://gosh-radist.blogspot.com/p/i.html , а приведённые выше таблицы помогут выбрать из двух зол наименьшее - либо потери в фидере, либо потери КСВ:-). В любом случае то, что я описал выше лучше знать, чем оставаться в неведении... При выборе, установке или настройке той или иной антенны необходимо знать несколько основных их свойств, которые можно описать следующими понятиями:

Резонансная частота

Антенна излучает или принимает электромагнитные колебания с наибольшей эффективностью только тогда, когда частота возбуждающего колебания совпадает с резонансной частотой антенны. Из этого следует, что ее активный элемент, вибратор или рамка имеют такой физический размер, при котором наблюдается резонанс на нужной частоте. Изменением линейных размеров активного элемента - излучателя, антенна настраивается в резонанс. Как правило (исходя из наилучшего соотношения эффективность/трудоёмкость и согласования с линией передачи), длина антенны равна половине или четверти длины волны на центральной рабочей частоте. Однако из-за емкостных и концевых эффектов электрическая длина антенны больше, чем ее физическая длина. На резонансную частоту антенны влияют: близость расположения антенны над землей или какого-нибудь проводящего объекта. Если это антенна многоэлементная, то резонансная частота активного элемента может еще изменяться в ту или иную сторону в зависимости от расстояния активного элемента по отношению к рефлектору или директору. В справочниках по антеннам приводятся графики или формулы для нахождения коэффициента укорочения вибратора в свободном пространстве в зависимости от отношения длины волны к диаметру вибратора. В действительности коэффициент укорочения определить точнее довольно сложно, т.к. существенное влияние оказывает высота подвеса антенны, окружающие предметы, проводимость почвы и т.п. В связи с этим, при изготовлении антенны, используют дополнительные элементы подстройки, позволяющие в небольших пределах изменять линейные размеры элементов. Одним словом «доводить» антенну до рабочего состояния лучше на месте её постоянного расположения. Обычно, если антенна проволочная типа диполя или Инвертед V, укорачивают (или удлиняют) провод, подключенный к центральной жиле фидера. Так меньшими изменениями можно добиться большего эффекта. Таким образом настраивают антенну на рабочую частоту. Кроме этого, изменяя наклон лучей в Инвертед V, подстраивают по минимуму КСВ. Но и этого может оказаться недостаточно. Об этом ниже.

Импеданс или входное сопротивление (или сопротивление излучения)

Умное слово Импеданс обозначает комплексное (суммарное) сопротивление антенны и оно изменяется вдоль ее длины. Точка максимального тока и минимального напряжения соответствует наименьшему импедансу и называется точкой возбуждения. Импеданс в этой точке называется входным импедансом. Реактивная составляющая входного импеданса на резонансной частоте теоретически равна нулю. На частотах выше резонансной, импеданс носит индуктивный характер, а на частотах ниже резонансной - емкостной. На практике реактивная составляющая в большинстве случаев меняется от 0 до +/-100 Ом. Импеданс антенны может зависеть и от других факторов, например, от близости расположения к поверхности Земли или каким-либо токопроводящим поверхностям. В идеальном случае симметричный полуволновой вибратор имеет сопротивление излучения 73 Ом, а четвертьволновый несимметричный вибратор (читай штырь) - 35 Ом. В реальности влияние Земли или проводящих поверхностей может изменить эти сопротивления от 50 до 100 Ом для полуволновой и от 20 до 50 Ом для четвертьволновой антенны. Известно, что такая антенна, как Инвертед V, из-за влияния Земли и других объектов никогда не получается строго симметричной. И чаще всего сопротивление излучения в 50 Ом оказывается смещено от середины. (Следует одно плечо укоротить, а другое увеличить на эту же величину.) Так, например, три противовеса чуть короче четверти волны расположенные под углом в 120 градусов в горизонтальной и вертикальной плоскостях, превращают сопротивление GP в очень удобные для нас 50 Ом. И вообще сопротивление антенны чаще «подгоняют» под сопротивление линии передачи, чем наоборот, хотя известны и такие варианты. Этот параметр очень важен при конструировании узла питания антенны. Не специалисты и не очень опытные радиолюбители, я, например, даже не догадываются, что активные элементы во многодиапазонных антеннах можно подключать физически не все! Например, очень распространенная конструкция, когда непосредственно к фидеру подключается только два, а то и один элемент, а остальные возбуждаются переизлучением. Даже жаргонное слово такое есть – «переопылением». Конечно это не лучше чем прямое возбуждение вибраторов, но очень экономно и сильно упрощает конструкцию и вес. Пример – многочисленные конструкции трехдиапазонных антенн типа Уда-Яги. Русские Яги в том числе. Активное питание всех элементов – это классика, так сказать. Всё по науке, максимальная полоса пропускания без завалов, намного лучше диаграммы направленности и соотношения Front/Back. Но всё хорошее всегда дороже. И тяжелее: -) Поэтому за этим тянется более могучая мачта, такая же поворотка, площадь под растяжки и т.д. и т.п. Для нас, потребителей, стоимость – не последний аргумент: -). Не следует забывать и о таком приёме как симметрирование. Оно необходимо для устранения «перекоса» при питании симметричной антенны несимметричной линией питания (в нашем случае коаксиальный кабель) и вносит значительные изменения в реактивную составляющую сопротивления приближая его к чисто активному.

На практике это или специальный трансформа

тор именуемый балун (баланс-унбаланс) или просто некоторое количество ферритовых колец, надетых на кабель вблизи точки подключения антенны. Обратите внимание, что когда мы говорим "балун-трансформатор", то имеем в виду что в этом случает реально транфсормируется импеданс, а если это просто балун, то скорее это дроссель включенный в цепь оплетки кабеля. Обычно даже для диапазона 80 метров хватает десятка колец (типоразмер по кабелю, проницаемость что-нибудь от 1000НН и меньше). На диапазонах выше и того меньше. Если кабель тонкий, и есть одно или несколько колец большого диаметра, можно поступить наоборот: намотать на колце(цах) несколько витков кабелем. Важно: из всех витков что помещаются, половину надо намотать в другую сторону. У меня на диполе 80-ти метрового диапазона 10 витков кабеля на кольце 1000НН (рис.5), а на трехдиапазонном гексабиме(спайдере) 20 колец надетых на кабель. Их общее сопротивление (как индуктивность) на рабочей частоте должно быть более 1 килоОма. Это исключит протекание тока по оплетке кабеля, тем самым достигается симметричное возбуждение в точке подключения.

Самое практичное решение, в связи со своей простотой и эффективностью применяемое повсеместно – это 6-10 витков кабелем питания в катушку диаметром 20 сантиметров (витки следует закрепить или на каркасе или пластиковыми направляющими так, чтобы получилась индуктивность, а не бухта кабеля: -). На фото это можно хорошо рассмотреть. Этот прием отлично сработает и на вашем обычном диполе. Попробуйте, и вы сразу заметите разницу в уровне TVI.

Усиление

Если антенна излучает одинаковую мощность абсолютно во всех направлениях, она называется изотропной. Т.е. диаграмма направленности – сфера, шар. Реально такая антенна не существует, поэтому её еще можно назвать виртуальной. У неё только один элемент – у неё нет усиления. Понятие «усиление» может применить только к многоэлементным антеннам, оно образуется за счет переизлучения синфазных электромагнитных волн и сложения сигналов на активном элементе. Всем нам знакома ситуация с плохой связью мобильных телефонов в сельской местности? И как мы её решаем? Находим длинный токопроводящий предмет и подносим к нему «мобилу» как можно ближе. Качество связи возрастает. Конечно же, за счет переизлучения найденным нами токопроводящим предметом сигналов базовой станции. Те, кто постарше, может быть помнят аналогичную ситуацию с транзисторными приемниками 60-тых. Слушали «Битлз». Та же ситуация. Особенно это было заметно на магнитных антеннах: из-за большого количества витков магнитной антенны суммируемое переизлучаемое напряжение было больше. Особый случай, иногда употребляют слово «усиление» в отношении одиночного штыря для определения насколько вертикальная составляющая излучения меньше излучения в горизонтальной плоскости. Априори это не есть усиление – это скорее коэффициент трансформации: -) Не путайте с фазированными или коллинеарными вертикалами: в них два или больше элементов, и у них есть реальный коэффициент усиления. Коэффициент усиления можно получить, сконцентрировав энергию излучения в одном направлении. Усиление образуется за счет сложения-вычитания радиоволн возбужденных в вибраторе и переизлучённых директором. На анимированном чертеже результирующая волна показана зелёным цветом.

Коэффициент направленного действия (КНД) является мерой увеличения потока мощности за счет сжатия диаграммы направленности в каком-то одном направлении. Антенна может иметь высокий КНД, но малый коэффициент усиления, если омические потери в ней велики и «съедают» полученное за счет переизлучения полезное напряжение. Коэффициент усиления рассчитывается сравнением напряжения на измеряемой антенне, с напряжением на эталонном полуволновом диполе, работающем на той же частоте, что и измеряемая антенна, и том же удалении от передатчика. Обычно коэффициент усиления выражается в децибелах по отношению к эталонному диполю - dB. Точнее это будет называться dBd. А вот если сравнивать с виртуальной, изотропной антенной, то тогда величина будет выражаться в dBi и само число будет несколько больше, потому что диполь всё-таки имеет какие-то направленные свойства – максимумы в направлении перпендикулярном полотну, если помните, а изотропная антенна нет. В знаменателе меньшее число, поэтому и отношение больше. Но вы на них не «введитесь», мы практики, смотрим всегда на dBd. Вот так плавно мы подошли к понятию

Диаграмма направленности

Антенны стараются конструировать таким образом, чтобы они имели максимум коэффициента усиления (принимали и передавали) в заранее выбранном направлении. Это свойство называется направленностью. На анимации приведен динамический чертёж сложения-вычитания возбуждаемой в вибраторе и переизлучённой рефлектором и директором радиоволн. Зелёным цветом обозначена результирующая радиоволна. Характер излучения антенны в пространстве описывается диаграммой направленности. Кроме излучения в основном (главном) направлении, существуют побочные излучения - задние и боковые лепестки.


Диаграмму направленности передающей антенны можно построить, поворачивая ее и измеряя напряженность поля на фиксированном расстоянии и не изменяя частоту передачи. Эти измерения преобразованные в графическую форму дают представление в каком направлении антенна имеет максимальный коэффициент усиления, т.е. полярная диаграмма показывает направление, в котором концентрируется энергия, излучаемая антенной в горизонтальной и вертикальной плоскостях. В радиолюбительской практике это наиболее сложный вид измерений. Проводя измерения в ближней зоне необходимо учитывать ряд факторов влияющих на достоверность измерений. Любая антенна кроме основного лепестка имеет еще и ряд боковых лепестков, в диапазоне коротких волн мы не можем поднять антенну на большую высоту. При измерениях диаграммы направленности в диапазоне КВ боковой лепесток отразившись от Земли или от ближнего здания может попасть на измерительный зонд, как в фазе так и в противофазе, что приведет к ошибке в измерениях.

Диаграмма направленности есть и у простых проволочных антенн. Например у диполя - восьмерка с глубокими провалами в диаграмме, что не есть хорошо. То же самое у популярной антенны Inv. V. Если все хорошо помнят учебники по радиотехнике или Ротхаммеля, то инвертед ви (диполь) имеет восьмерочную диаграмму. Т.е. есть глубокие провалы. А если поменять положение полотен, поменять местами одну пару (сдвинуть полотна одной антенны например под углом 90 градусов), то диаграмма начинает приближаться к условно говоря толстой сардельке. Но самое главное - пропадают провалы, а диаграмма "округляется". У диполя достаточно изменить угол между половинками. А если сделать у волнового диполя этот угол равным 90°, то с некоторой натяжкой диаграмму излучения можно назвать круговой.

Полоса пропускания

Как правило, различают два класса антенн: узкополосные и широкополосные. Очень важно, чтобы в рабочем интервале частот поддерживалось хорошее согласование и заданное усиление. Полоса пропускания антенны не должна меняться при перестройке по частоте передатчика или приемника. К узкополосным антеннам относятся все простые резонансные антенны, а также направленные такие как "волновой канал” и "квадрат”. Меня, как заядлого телеграфиста, вполне устраивают антенны с полосой 100 кгц, но есть универсалы, любители SSB, поэтому производители антенн стараются обеспечить полосу пропускания равную ширине радиолюбительских участков. Например, антенна волновой канал” на радиолюбительский диапазон 14 МГц должна иметь полосу пропускания не менее 300 кГц (14000 - 14300 кГц) и к тому же хорошее согласование в этой полосе частот. Широкополосные антенны отличаются большим диапазоном изменения частот, в котором сохраняются рабочие свойства антенны, во много раз превосходящим в этом отношении резонансные системы. К ним относятся логопериодические и спиральные антенны.

Коэффициент полезного действия (КПД)

Часть подводимой к антенне мощности излучается в пространство, а другая часть в проводниках антенны превращается в тепло. Поэтому, антенну можно представить как эквивалентное нагрузочное сопротивление состоящее из двух параллельных составляющих: сопротивления излучения и сопротивления потерь. Эффективность антенны характеризуется ее КПД или отношением полезной (излучаемой) мощности к суммарной мощности, подводимой к антенне. Чем больше сопротивление излучения по отношению к сопротивлению потерь, тем больше КГIД антенны. Совершенно очевидно, что хорошие электрические контакты и небольшие омические сопротивления (толщина элементов) – это хорошо.

КСВ

Как видите, этот параметр интересует нас в поледнюю очередь и не является главным. (Не дай бог вам подумать, что его плохому значению можно не огорчаться. Если КСВ более двух – это плохо). Если антенна настроена в резонанс и в ходе настройки мы скомпенсировали ее реактивность, и согласовали с фидером питания по сопротивлению, то КСВ будет равен единице. Только не используйте в качестве КСВ-метра встроенный в трансивер прибор. Он скорее индикатор. Плюс ко всему не всегда вылючается автотюнер. А мы ведь хотим знать правду. :-) И еще не забудьте про симметрирование (см. выше). Известно, что можно запитывать антенны коаксиальным кабелем любой длинны, на то он и несимметричный коаксиальный кабель, но в случае, когда по одному кабелю запитывается две антенны, лучше убедиться, что для обоих расчетных частот длинна кабеля кратна полуволне. Например, для частоты 14,100 длина кабеля должна быть:

100 / 14,1 х 1; 2; 3; 4 и т.д. = 7,09м; 14,18м; 21,27м; 28,36м и т.д.

Для 21,100мгц соответственно:

100 / 21,1 х 1; 2; 3; 4 и т.д. = 4,74м; 9,48м; 14,22м; 18,96м; 23,70; 28,44 и т.д.

Обычно народ считает приоритетным минимальную длину фидера, а если просчитать немного большие длины, то мы увидим, что для диапазонов 15 и 20 метров первая "кратность" наступит при длине кабеля 14,18 и 14,22 метра, вторая, соответственно, 28,44 метра и 28,36 метра. Т.е. разница в 4-ре сантиметра, длинна разъема PL259. :-) Этой величиной пренебрегаем и имеем один фидер для двух антенн. Просчитать «кратную длину» фидера для диапазонов 80 и 40 метров для вас теперь не составит труда. Если мы не забыли про симметрирование, теперь мы можем настраивать антенну с уверенностью в том, что фидер не вносит никаких помех в чистоту эксперимента. : -). Очень хороший вариант два двойных Инвертед Ви на двух мачтах: 40 и 80 + 20 и 15 метров. С таким вариантом (ну еще GP на 28 мгц на случай если будет прохождение) EN5R выезжает практически во все экспедиции.

Ну, вот теперь мы вооружены теоретическими знаниями о свойствах антенн и адекватно можем воспринимать советы по их исполнению и настройке. Конечно же всё теоретически, потому что вам на месте видней. Самый популярный среди антенн у радиолюбителей – диполь. Итак, исходные условия: мы можем поднять-опустить диполь в течении получаса и много раз в день. Тогда, скорее всего, нет смысла тратить время на предварительную настройку его на земле: это нетрудно будет выполнить для его работы на высоте подвеса. Из предварительных теоретических познаний вам понадобится только сведения о том, что рабочая частота диполя вблизи земли с подъемом «уйдет» вверх на 5-7 процентов. Например, для 20-ти метрового диапазона это 200-300 кгц.

Для настройки в резонанс с рабочей частотой обычного диполя можно использовать (кроме системы опустить-отрезать-поднять) или свип-генаратор (многие знают этот прибор под именем ГКЧ), или ГИР или, на худой конец, ГСС и осциллограф. Понятно, что если таких приборов нет, то придется настраивать полотно диполя в резонанс с помощью обыкновенного индикатора поля, или как его еще называют – зонд. Это обычный диполь с длинной полотен не менее чем в десять раз меньше чем расчетная длинна самой антенны, подключенный к выпрямительному мосту (лучше на германиевых диодах – будет реагировать на меньшее напряжение), нагруженному на обычный стрелочный прибор – микроамперметр с максимальным размером шкалы (чтобы лучше видно было: -) Лучше будет если зонд будет с контуром(фильтром) на рабочую частоту, чтобы не настроиться на мобилку соседа, и с усилителем. Например такой. Понятно, что подгоняем длину диполя по максимуму его излучения на рабочей частоте. Минимум КСВ в этом случае должен образоваться автоматом. Если нет, вспоминаем про симметрирование. Если не помогает и значение КСВ всё еще высокое – придется вспомнить о способах согласования. Хотя это бывает очень редко.

Следующая по сложности композиция – несколько диполей по одному кабелю. Ну, про кабель читайте выше, а про полотна следует знать следующее: для их минимального влияния одного на другой их следует растягивать под углом в 90 градусов. Если такой возможности нет, то после коррекции длинны одного, скорее всего, придется корректировать и другой. Несколько inv V. по одному кабелю – вариант описанный выше и отличается только тем, что «подровнять» КСВ к минимальному значению можно регулируя угол наклона полотен в вертикали (к мачте), что, конечно, проще, чем изготовление согласующего устройства и даже проще очередной подгонки динны полотна.

Итак, выясняется, что должна выполняться последовательность действий – сначала антенну настраивают в резонанс, а затем добиваются минимального КСВ в необходимой полосе частот. Всё это справедливо для простых дипольных антенн. И очень усложняется, в случае если антенна многоэлементная. В этом варианте без специальных приборов не обойтись, так как следует настроить не только систему с несколькими неизвестными, но еще и добиться вполне определённых направленных свойств. Настройка включает в себя измерение основных параметров антенны и коррекцию их путем подгонки линейных размеров элементов антенны, расстояний между элементами, настройки согласующих и симметрирующих устройств.

" Я бы с удовольствием помог Биллу, но так у меня КСВ единица на всех диапазонах..."

Совет: доверьтесь специалистам. Как говорил известный белорусский коротковолновик Владимир Приходько EW8AU, «настраивая антенну только по КСВ, можно из антенны сделать хорошую согласованную нагрузку для выходного каскада передатчика. Он хорошо будет работать в нормальном режиме, только антенна при этом может иметь плохую диаграмму направленности, низкий коэффициент полезного действия, часть мощности будет расходоваться на нагрев элементов антенны и антенно-фидерного тракта и самое неприятное, что может быть для радиолюбителя – это помехи телевидению».

  • Назад
  • Вперёд

You have no rights to post comments Недостаточно прав для комментирования

  • Таблетка от склероза

    Или Электронная пилюля. Прошло то время, когда мы помнили всё... :-(На сегодняшний день сочетание забывчивости и грозовыx разрядов привели к значительным материальным потерям. Проблема в том, что в сельской местности, где я живу, даже дома сделаны в лучшем случае из кирпича. В стенах практически нет металлической арматуры. Т.е. электрического экрана нет. А коммуникационные линии к дому уложены часто даже не кабелем, а обычным двухжильным проводом. Так с электропроводкой, с телефоном (интернет и трансивер подключены к одному копмьютеру) и радиоточкой. В таких условиях все эти провода превращаются в антенны-молниеуловители. А поскольку всё моё оборудование в конечном счёте привязано к этим проводам, да еще добавлены антенны, то моё хозяйство очень подверженно ударам стихии. В ноябре я надеялся, что грозы с летом уже ушли. Ан не тут то было. Одним словом два раза по 100 баксов еще когда у меня был Icom746 PRO, 600 гривен за замену интерфейса UniCOm Dual и даже вылетевший в Icome soundport в ACC2. Просто выдернутый из антенного грезда разъём лег на провод с аудио кабелем от звуковухи на ACC2. И оказалось достаточно разряда с кончика разъёма на оплётку мимо звукового кабеля. Одним словом, даже если я не забывал выдернуть разъём антенны из трансивера, потери были. Поэтому я нашёл электронный способ лечения склероза. А может не нашёл, а вспомнил... :-)

    Так уж вышло, что к Новому Году я вышел на рубеж, с которого могу авторитетно рассказать о тех новых возможностях, что дают интернет приёмники. Несколько лет до этого я эпизодически писал о том что это хорошо, что когда прохождение у нас заканчивается, оно начинается на другой стороне Земли. О том, что если у тебя на 80-ке ничего не слышно, сядь на CQ, а слушай наWEB SDR на даче. О том, что когда спутник выходит из твоей зоны видимости, он попадает в поле зрения соседа.... Одним словом интернет всё-равно уже оплачен, так почему бы его не пристегнуть к нашим потребностям? То, что подтолкнуло меня к написанию этого материала - списки активных (постоянно работающих) SDR приёмников. Образно говоря, это сумма коллективного разума и альтруистического энтузиазма - за свои деньги дать людям возможность пользоваться своими антеннами и приёмниками.

    В продолжение темы про SDR свистки и их преимущества. Вернее касательно недостатков:-) Главный - АРУ работает от сигналов в полосе 3 мгц:-) Я уже писал про сложение сигналов и на КВ и на УКВ потому что считаю интересным слушать широкополосные приёмники которые могут "прожевать" не только спектр сигналов в диапазоне от 0 до 2 ггц но еще и поскимерить там. Кто не интересовался до сих пор словом скиммер посмотрите в Вики. Но думаю что каждый хоть раз заглядывал на сайт Reverse Beacon System. Совершенно случайно у меня в портфольо на месяц оказались две новые фотографии которые теме соответствуют:-) Как заставить одну программу скиммера (один комп:-) шпионить сразу на нескольких диапазонах? Вот, смотрите, легко.