Инфракрасное излучение. Открытие инфракрасного излучения

Определение 1

Под инфракрасным излучением (ИК) понимается форма энергии или способ обогрева, при котором тепло от одного тела передается другому телу.

Человек в процессе своей жизни постоянно находится под действием ИК-излучения и способен чувствовать эту энергию как тепло, идущее от предмета. Воспринимается инфракрасное излучение кожей человека , глаза в этом спектре не видят.

Естественным источником высокой температуры является наше светило. С температурой нагревания связана длина волны инфракрасных лучей, которые бывают коротковолновыми, средневолновыми, длинноволновыми.

Короткая длина волны имеет высокую температуру и интенсивное излучение. Ещё в $1800$ г. английский астроном У. Гершель проводил наблюдения за Солнцем. Занимаясь исследованием светила, он искал способ, который бы позволил уменьшить нагрев инструмента, при помощи которого эти исследования проводились. На одном из этапов своей работы ученый обнаружил, что за насыщенным красным цветом находится «максимум тепла ». Исследование стало началом изучения инфракрасного излучения .

Если раньше источниками инфракрасного излучения в лаборатории служили раскаленные тела или электрические разряды в газах, то сегодня созданы современные источники инфракрасного излучения с частотой, которую можно регулировать или фиксировать. Их основой являются твердотельные и молекулярные газовые лазеры.

В ближней инфракрасной области (около $1,3$ мкм) для регистрации излучения пользуются специальными фотопластинками .

В дальней инфракрасной области излучение регистрируется болометрами – это детекторы, которые являются чувствительными к нагреву инфракрасным излучением.

Инфракрасные волны имеют разную длину , поэтому их проникающая способность будет тоже разная.

Длинноволновые , идущие от Солнца лучи, например, спокойно проходят через атмосферу Земли , при этом, не нагревая её. Проникая через твердые тела, они увеличивают их температуру, поэтому для всего живого на планете огромное значение имеет именно дальнее излучение .

Интересно, что в постоянной компенсирующей подпитке нуждаются все живые тела, которые тоже излучают такой же спектр тепла. При отсутствии такой подпитки, температура живого тела падает, что является причиной его уязвимости для различных инфекций. Эта дополнительная подпитка в виде ИК-излучения, как считают ученые, скорее полезна , чем вредна.

Замечание 1

Специалисты провели на животных многочисленные эксперименты, которые показали, что инфракрасные лучи подавляют рост раковых клеток, уничтожают ряд вирусов, нейтрализуют разрушительное действие электромагнитных волн. Длинноволновые инфракрасные лучи повышают количество инсулина, вырабатываемого организмом, и нивелируют последствия радиоактивного воздействия.

Применение инфракрасного излучения

Инфракрасное излучение находит широкое применение, как в быту, так и в разных сферах деятельности человека.

Основными областями его применения являются:

    Термография . ИК-излучение позволяет определить температуру объектов, которые находятся на каком-то удалении. В промышленных и военных целях широко используется тепловидение, его камеры могут обнаружить ИК и произведут изображение этого излучения. Благодаря термографическим камерам без всякого освещения можно «видеть» все, что находится рядом, потому что все нагретые объекты испускают ИК.

    Слежение . Используется ИК слежение при наведении ракет, в которые встраивается устройство, получившее название «тепловые искатели ». В результате того, что двигатели машин и механизмов, да и сам человек излучают тепло, то хорошо будут видны в инфракрасном диапазоне, а отсюда ракеты без всякого труда находят направление полета.

    Обогрев. Как источник тепла ИК повышает температуру и благотворно влияет на здоровье человека, например, инфракрасные сауны , о которых сегодня много говорят. Используют их при лечении гипертонии, сердечной недостаточности, ревматоидного артрита.

    Метеорология . Высота облаков, температура поверхности воды и земли определяется со спутников, делающих инфракрасные изображения. На таких снимках холодные облака окрашены в белый цвет, теплые же облака окрашены в серый цвет. Черным или серым цветом окрашивается горячая поверхность земли.

    Астрономия. При наблюдении за небесными объектами астрономы используют специальные инфракрасные телескопы. Благодаря этим телескопам ученые определяют протозвезды до момента излучения ими видимого света, различают прохладные объекты, наблюдают ядра галактик.

    Искусство . И здесь инфракрасное излучение нашло применение. Искусствоведы, благодаря инфракрасным рефлектограммам , видят нижние слои картин, наброски художника. Данный прибор помогает отличить оригинал от копии, ошибки реставрационных работ. С его помощью изучаются старые письменные документы.

    Медицина. Широко известны лечебные свойства ИК - терапии. Нагретая глина, песок, соль издавна считались целебными и благотворно влияющими на организм человека. ИК помогают лечить переломы, улучшают обмен веществ в организме, ведут борьбу с ожирением, способствуют заживлению ран, улучшают циркуляцию крови, оказывают благотворное влияние на суставы и мышцы.

Кроме этого лечебное воздействие используют при заболеваниях:

  1. Хроническим бронхитом и бронхиальной астмой;
  2. Пневмонией;
  3. Хроническим холециститом и его обострением;
  4. Простатитом с нарушением потенции;
  5. Ревматоидным артритом;
  6. При заболеваниях мочевыводящих путей и др.

Для того чтобы использовать инфракрасные лучи в лечебных целях, необходимо учитывать противопоказания.

Большой вред они могут принести:

  1. Когда у человека есть гнойные заболевания;
  2. Скрытые кровотечения;
  3. Заболевания крови;
  4. Новообразования и, прежде всего, злокачественные;
  5. Воспалительные заболевания, чаще всего острые.

Коротковолновые ИК отрицательно воздействуют на мозговую ткань человека, в результате чего наблюдается «солнечный удар ». Вред в этом случае очевиден. Человек испытывает головную боль, пульс и дыхание становятся учащенными, в глазах темнеет, возможна потеря сознания. При дальнейшем облучении организм не выдерживает – происходит отек тканей и оболочек мозга, появляются симптомы энцефалита и менингита. Короткие волны особенно сильный вред наносят глазам человека, сердечнососудистой системе.

Замечание 2

Таким образом, получается, что польза воздействия ИК на организм, несмотря на отрицательные моменты, значительна.

Защита от инфракрасного излучения

Для снижения наносимого ИК вреда и защиты от него разработаны нормы ИК-облучения, безопасные для человека.

Основные мероприятия защиты:

  1. Устаревшие технологии необходимо заменить современными, что позволит снизить интенсивность излучения источника;
  2. Использование экранов из металлических сеток и цепей, облицовка асбестом открытых печных проёмов;
  3. Обязательная индивидуальная защита и, прежде всего, глаз очками со светофильтрами;
  4. Защита тела льняной или полульняной спецодеждой;
  5. Рациональный режим труда и отдыха;
  6. Обязательные лечебно-профилактические мероприятия работников.

Инфракра́сное излуче́ние - электромагнитное излучение , занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1-2 мм, частота 300 ГГц).

Весь диапазон инфракрасного излучения условно делят на три области:

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн - терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым излучением », так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Энциклопедичный YouTube

    1 / 3

    ✪ 36 Инфракрасное и ультрафиолетовое излучения Шкала электромагнитных волн

    ✪ Опыты по физике. Отражение инфракрасного излучения

    ✪ Опыты по физике. Преломление и поглощение инфракрасного излучения

    Субтитры

История открытия и общая характеристика

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы . Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением .

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте .

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов .

Диапазоны инфракрасного излучения

Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

Обычная схема деления

Чаще всего разделение на более мелкие диапазоны производится следующим образом:

Аббревиатура Длина волны Энергия фотонов Характеристика
Near-infrared, NIR 0.75-1.4 мкм 0.9-1.7 эВ Ближний ИК, ограниченный с одной стороны видимым светом, с другой - прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
Short-wavelength infrared, SWIR 1.4-3 мкм 0.4-0.9 эВ Поглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530-1560 нм преобладает в области дальней связи.
Mid-wavelength infrared, MWIR 3-8 мкм 150-400 мэВ В этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры .
Long-wavelength infrared, LWIR 8-15 мкм 80-150 мэВ В этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
Far-infrared, FIR 15 - 1000 мкм 1.2-80 мэВ

CIE схема

Международная комиссия по освещённости (англ. International Commission on Illumination ) рекомендует разделение инфракрасного излучения на следующие три группы:

  • IR-A: 700 нм – 1400 нм (0.7 мкм – 1.4 мкм)
  • IR-B: 1400 нм – 3000 нм (1.4 мкм – 3 мкм)
  • IR-C: 3000 нм – 1 мм (3 мкм – 1000 мкм)

ISO 20473 схема

Тепловое излучение

Теплово́е излуче́ние или лучеиспускание - передача энергии от одних тел к другим в виде электромагнитных волн , излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм . Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме . Примером теплового излучения является свет от лампы накаливания . Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела , описывается законом Стефана - Больцмана . Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа . Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение - тепловое излучение, находящееся в термодинамическом равновесии с веществом.

Инфракрасное зрение

Применение

Прибор ночного видения

Существует несколько способов визуализировать невидимое инфракрасное изображение:

  • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
  • Электронно-оптический преобразователь - вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
  • Болометр - тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3..14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

Термография

Инфракрасная термография, тепловое изображение или тепловое видео - это научный способ получения термограммы - изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900-14000 нанометров или 0,9-14 µм) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела , термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение

Инфракрасная головка самонаведения - головка самонаведения , работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью . Представляет собой оптико-электронный прибор , предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель

Передача данных

Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам , и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств, низкие скорости передачи (обычно не превышает 5-10 Мбит/с, но при использовании инфракрасных лазеров возможны существенно более высокие скорости). Кроме этого, не обеспечивается скрытность передачи информации. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров, но наиболее удобен он для связи компьютеров, находящихся в одной комнате, где отражения от стен комнаты дает устойчивую и надежную связь. Наиболее естественный тип топологии здесь - «шина» (то есть переданный сигнал одновременно получают все абоненты). Инфракрасный канал не смог получить широкого распространения, его вытеснил радиоканал.

Тепловое излучение применяется также для приема сигналов оповещения.

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления , системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата .

Медицина

Наиболее широко инфракрасное излучение в медицине находит в различных датчиках потока крови (PPG).

Широко распространенные измерители частоты пульса (ЧСС, HR - Heart Rate) и насыщения крови кислородом (Sp02) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Инфракрасные лучи применяются в физиотерапии .

Влияние длинноволнового инфракрасного излучения:

  • Стимуляция и улучшение кровообращения.При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
  • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (

Свет – это залог существования живых организмов на Земле. Существует огромное количество процессов, которые могут протекать благодаря воздействию инфракрасного излучения. Помимо этого, его применяют в лечебных целях. С ХХ века терапия светом стала значимой составляющей традиционной медицины.

Особенности излучения

Фототерапия – это специальный раздел в физиотерапии, занимающийся изучением воздействия волны световой на организм человека. Было отмечено, что волны имеют различный диапазон, поэтому они по-разному сказываются на человеческом организме. Важно отметить, излучение владеет самой большой глубиной проникновения. Что касается поверхностного влияния, то им обладает ультрафиолет.

Диапазон инфракрасного спектра (спектр излучения) имеет соответствующую длину своей волны, а именно 780 нм. до 10000 нм. Что касается физиотерапии, то для лечения человека применяется длина волны, которая колеблется в спектре от 780 нм. до 1400 нм. Данный диапазон инфракрасного излучения считается нормой для терапии. Простыми словами, применяется соответствующая длина волны, а именно более короткая, способная проникать в кожу на три сантиметра. Помимо этого, учитывается специальная энергия кванта, частота излучений.

Согласно многим исследованиям, было установлено, что свет, радиоволны, лучи инфракрасные, обладают одной природой, так как это разновидности электромагнитной волны, которая окружает людей повсюду. Подобные волны обеспечивают работу телевизоров, мобильных телефонов и радио. Простыми словами, волны позволяют человеку увидеть окружающий мир.

Инфракрасный спектр имеет соответствующую частоту, длина волны которой 7-14 мкм, что оказывает уникальное воздействие на организм человека. Данная часть спектра соответствует излучениям человеческого тела.

Что касается объектов кванта, то молекулы не имеют возможности произвольно колебаться. Каждая молекула кванта обладает определенным комплексом энергии, частот излучений, которыми запасаются в момент колебаний. Однако стоит учесть, что молекулы воздуха оснащены обширным набором таких частот, поэтому атмосфера способна поглощать излучение в разнообразных спектрах.

Источники излучения

Солнце является основным источником ИК.

Благодаря ему предметы могут нагреваться до конкретной температуры. В итоге осуществляется излучение тепловой энергии в спектре данных волн. Затем энергия доходит к объектам. Процесс передачи тепловой энергии осуществляется от предметов с высокой температурой к более низкой. В этой ситуации у объектов присутствуют различные излучающие свойства, имеющие зависимость от нескольких тел.

Источники инфракрасного излучения присутствуют повсюду, они оснащенными такими элементами, как светодиоды. Все современные телевизоры оснащены пультами, работающими на дистанционном управлении, так как он функционирует в соответствующей частоте инфракрасного спектра. В их составе имеются светодиоды. Различные источники инфракрасного излучения можно увидеть на промышленных производствах, например: в сушке лакокрасочных поверхностей.

Самым ярким представителем искусственного источника на Руси являлись русские печи. Практически все люди испытали на себе влияние подобной печи, а также оценили ее пользу. Именно поэтому от нагретой печи или же радиатора отопления можно почувствовать такое излучение. В настоящее время огромной популярностью пользуются обогреватели инфракрасные. Они обладают перечнем преимуществ по сравнению с конвекционным вариантом, так как более экономичны.

Значение коэффициента

В инфракрасном спектре имеется несколько разновидностей коэффициента, а именно:

  • излучения;
  • коэффициент отражения;
  • пропускной коэффициент.

Итак, коэффициент излучения является способностью объектов излучать частоту излучений, а также энергию кванта. Может меняться в соответствии с материалом и его свойствами, а также температуры. Коэффициент имеет такое максимальное излечение = 1, но в реальной ситуации он всегда меньше. Что касается низкой способности излучения, то ею наделены элементы, имеющие блестящую поверхность, а также металлы. Коэффициент зависит от температурных показателей.

Коэффициент отражения дает увидеть возможность материалов отражать частоту изучений. Зависит от типа материалов, свойств и температурных показателей. В основном отражение имеется у полированных и гладких поверхностей.

Коэффициент пропускания показывает способность предметов проводить сквозь себя частоту инфракрасного излучения. Подобный коэффициент напрямую зависит от толщины и разновидности материала. Важно заметить, что большая часть материалов не имеет такой коэффициент.

Использование в медицине

Световое лечение инфракрасным излучением стало достаточно популярным в современном мире. Применение инфракрасного излучения в медицине обусловлено тем, что методика имеет лечебные свойства. Благодаря этому, наблюдается благотворное влияние на организм человека. Тепловое влияние образует в тканях тело, регенерирует ткани и стимулирует репарацию, ускоряет физико-химические реакции.

Помимо этого, организм испытывает значительные улучшения, так как происходят такие процессы:

  • ускорение кровотока;
  • расширение сосудов;
  • выработка биологически активных веществ;
  • мышечная релаксация;
  • прекрасное настроение;
  • комфортное состояние;
  • хороший сон;
  • снижение давления;
  • снятие физического, психоэмоционального перенапряжения и прочее.

Видимый эффект от лечения наступает в течение нескольких процедур. Помимо отмеченных функций, инфракрасный спектр оказывает противовоспалительное влияние на организм человека, помогает бороться с инфекцией, стимулирует и укрепляет иммунную систему.

Подобная терапия в медицине имеет следующие свойства:

  • биостимулирующее;
  • противовоспалительное;
  • дезинтоксикационное;
  • улучшение кровотока;
  • пробуждение второстепенных функций организма.

Инфракрасное световое излучения, а точнее лечение им, имеет видимую пользу для человеческого организма.

Лечебные методики

Терапия бывает двух видов, а именно – общая, местная. Что касается местного воздействия, то лечение осуществляется на определенной части тела больного. Во время общей терапии, применение световой терапии рассчитано на весь организм.

Процедура осуществляется дважды в день, продолжительность сеанса колеблется в пределах 15-30 минут. Общий лечебный курс содержит не менее пяти – двадцати процедур. Следите за тем, чтобы была готова защита от инфракрасного излучения, предназначенная для области лица. Для глаз предназначены специальные очки, вата или же картонные накладки. После проведения сеанса, кожа покрывается эритемой, а именно – покраснениями, имеющими размытые границы. Эритема исчезает через час после процедуры.

Показания и противопоказания к лечению

ИК имеет основные показания к применению в медицине:

  • болезни лор-органов;
  • невралгия и неврит;
  • заболевания, затрагивающие опорно-двигательный аппарат;
  • патология глаз и суставов;
  • воспалительные процессы;
  • раны;
  • ожоги, язвы, дерматозы и рубцы;
  • астма бронхиальная;
  • цистит;
  • болезнь мочекаменная;
  • остеохондроз;
  • холецистит без камней;
  • артрит;
  • гастродуоденит в хронической форме;
  • пневмония.

Световое лечение имеет положительные результаты. Помимо лечебного эффекта, ИК может быть опасно для человеческого организма. Это обусловлено тем, что имеются определенные противопоказания, не соблюдая которые можно нанести вред здоровью.

Если имеются следующие недуги, то подобное лечение принесет вред:

  • период беременности;
  • болезни крови;
  • индивидуальная непереносимость;
  • хронические болезни в острой стадии;
  • гнойные процессы;
  • туберкулез активной формы;
  • предрасположенность к кровотечениям;
  • новообразования.

Следует учитывать указанные противопоказания, чтобы не причинить вреда собственному здоровью. Слишком высокая интенсивность излучения способна причинить огромный вред.

Что касается вреда ИК в медицине и на производстве, то может возникнуть ожог и сильнейшее покраснение кожного покрова. В некоторых случаях у людей возникали опухоли на лице, так как они контактировали с данным излучением достаточно долго. Существенный вред инфракрасного излучения может вылиться в форме дерматитов, а также бывает тепловой удар.

Инфракрасные лучи достаточно опасны для глаз, особенно в диапазоне до 1,5 мкм. Длительное воздействие оказывает существенный вред, так как появляется светобоязнь, катаракта, проблемы со зрением. Длительное влияние ИК – очень опасно не только для людей, но для растений. Используя оптические приборы, можно постараться исправить проблему со зрением.

Воздействие на растения

Всем известно, что ИК оказывают благотворное влияние на рост, развитие растений. Например, если обустроить теплицу обогревателем с ИК, то можно увидеть ошеломляющий результат. Обогрев осуществляется в инфракрасном спектре, где соблюдается определенная частота, а волна равна от 50 000 нм. до 2 000 000 нм.

Существуют достаточно интересные факты, согласно которым можно узнать, что все растения, живые организмы, подвергаются влиянию солнечного света. Радиация солнца имеет определенный диапазон, состоящий из 290 нм. – 3000 нм. Простыми словами, лучистая энергия оказывает важную роль в жизни каждого растения.

Учитывая интересные и познавательные факты, можно определить, что растения нуждаются в свете и солнечной энергии, так как они отвечают за формирование хлорофилла и хлоропластов. Скорость света влияет на растяжение, зарождение клеток и ростовых процессов, сроки плодоношения и цветения.

Специфика микроволновой печи

Бытовые микроволновые печи оснащены микроволнами, показатели которых немного ниже гамма и рентгеновских лучей. Такие печи способны спровоцировать ионизирующий эффект, который несет опасность человеческому здоровью. Микроволны расположились в промежутке между инфракрасными и радиоволнами, поэтому такие печи не могут ионизировать молекулы, атомы. Исправные СВЧ-печи не оказывают воздействия на людей, так как они впитываются в пищу, образуя тепло.

СВЧ-печи – не могут излучать радиоактивных частиц, поэтому не оказывают радиоактивного влияния на пищу и живые организмы. Именно поэтому не стоит переживать, что микроволновые печи способны навредить вашему здоровью!

Для того, чтобы понять принцип работы инфракрасных излучателей, необходимо представлять себе суть такого физического явления как инфракрасное излучение.

Диапазон инфракрасного излучения и длина волны

Инфракрасное излучение - это разновидность электромагнитного излучения, занимающего в спектре электромагнитных волн диапазон от 0,77 до 340 мкм. При этом диапазон от 0,77 до 15 мкм считается коротковолновым, от 15 до 100 мкм - средневолновым, а от 100 до 340 - длинноволновым.

Коротковолновая часть спектра примыкает к видимому свету, а длинноволновая сливается с областью ультракоротких радиоволн. Поэтому инфракрасное излучение обладает как свойствами видимого света (распространяется прямолинейно, отражается, преломляется как и видимый свет), так и свойствами радиоволн (оно может проходить сквозь некоторые материалы, непрозрачные для видимого излучения).

Инфракрасные излучатели с температурой на поверхности от 700 С до 2500 С имеют длину волны 1,55-2,55 мкм и называются "светлыми" - по длине волны они ближе к видимому свету, излучатели с более низкой температурой поверхности имеют большую длину волны и называются "темными".

Источники инфракрасного излучения

Вообще говоря, любое тело, нагретое до определенной температуры, излучает тепловую энергию в инфракрасном диапазоне спектра электромагнитных волн и может передавать эту энергию посредством лучистого теплообмена другим телам. Передача энергии происходит от тела с более высокой температурой к телу с более низкой температурой, при этом, разные тела имеют различную излучающую и поглощающую способность, которая зависит от природы двух тел, от состояния их поверхности и т.д.

Электромагнитное излучение обладает квантово-фотонным характером. При взаимодействии с веществом фотон поглощается атомами вещества, передавая им свою энергию. При этом возрастает энергия тепловых колебаний атомов в молекулах вещества, т.е. энергия излучения переходит в теплоту.

Суть лучистого отопления состоит в том, что горелка, являясь источником излучения, генерирует, формирует в пространстве и направляет тепловое излучение в зону обогрева. Оно попадает на ограждающие конструкции (пол, стены), технологическое оборудование, людей, находящихся в зоне облучения, поглощается ими и нагревает их. Поток излучения, поглощаясь поверхностями, одеждой и кожей человека, создает тепловой комфорт без повышения температуры окружающего воздуха. Воздух в обогреваемых помещениях, оставаясь практически прозрачным для инфракрасного излучения, нагревается за счет "вторичного тепла", т.е. конвекции от конструкций и предметов, нагретых излучением.

Свойства и применение инфракрасного излучения

Установлено, что воздействие инфракрасного радиационного отопления благоприятно сказывается на человеке. Если тепловое излучение с длиной волны больше 2 мкм воспринимается в основном кожным покровом с проведением образовавшейся тепловой энергии внутрь, то излучение с длиной волны до 1,5 мкм проникает через поверхность кожи, частично нагревает ее, достигает сети кровеносных сосудов и непосредственно повышает температуру крови. При определенной интенсивности теплового потока его воздействие вызывает приятное тепловое ощущение. При лучистом обогреве человеческое тело отдает большую часть избыточного тепла путем конвекции окружающему воздуху, имеющему более низкую температуру. Такая форма теплоотдачи действует освежающе и благоприятно влияет на самочувствие.

В нашей стране изучение технологии инфракрасного отопления ведется с 30-х годов как применительно к сельскому хозяйству, так и для промышленности.

Проведенные медико-биологические исследования позволили установить, что системы инфракрасного отопления более полно отвечают специфике животноводческих помещений, чем конвективные системы центрального или воздушного отопления. Прежде всего, за счет того, что при инфракрасном обогреве температура внутренних поверхностей ограждений, особенно пола, превышает температуру воздуха в помещении. Этот фактор благоприятно сказывается на тепловом балансе животных, исключая интенсивные потери тепла.

Инфракрасные системы, работающие совместно с системами естественной, вентиляции обеспечивают снижение относительной влажности воздуха до нормативных значений (на свинофермах и в телятниках до 70-75% и ниже).

В результате работы этих систем температурно-влажностный режим в помещениях достигает благоприятных параметров.

Применение систем лучистого отопления для сельскохозяйственных зданий позволяет не только создавать необходимые условия микроклимата, но и интенсифицировать производство. Во многих хозяйствах Башкирии (колхоз им. Ленина, колхоз им. Нуриманова) значительно увеличилось получение приплода после внедрения инфракрасного отопления (увеличение опороса в зимний период в 4 раза), возросла сохранность молодняка (с 72,8% до 97,6%).

В настоящее время система инфракрасного отопления установлена и отработала уже один сезон на предприятии "Чувашский бройлер" в пригороде г. Чебоксары. По отзывам руководителей хозяйства, в период минимальных зимних температур -34-36 С система работала бесперебойно и обеспечивала требуемое тепло для выращивания птицы на мясо (напольное содержание) в период 48 дней. В настоящее время ими рассматривается вопрос об оборудовании инфракрасными системами остальных птичников.

Для защиты от инфракрасного излучения (ИКИ) в производственных условиях могут быть использованы коллективные средства защиты и индивидуальные. Коллективные средства защиты представлены на рис. 6.1. К основным видам защиты от ИКИ относятся: 1. защита временем; 2. защита расстоянием; 3. экранирование,...
(Защита техносферы от воздействия физических полей и излучений. Т.3 Виды физических полей и излучений)
  • Инфракрасное излучение - излучение оптического диапазона, представляющее собой электромагнитное излучение с длинами волн: область Л - 760-1500 нм, В - 1500-3000 нм, С - более 3000 нм. Источниками инфракрасного излучения являются открытое пламя, расплавленный и нагретый металл, стекло, нагретые...
  • Защита от инфракрасного излучения, теплоизоляция, экранирование
    Инфракрасное излучение - излучение оптического диапазона, представляющее собой электромагнитное излучение с длинами волн: область А - 760-1500 нм, В - 1500-3000 нм, С - более 3000 нм. Источниками инфракрасного излучения являются открытое пламя, расплавленный и нагретый металл, стекло, нагретые...
    (Охрана труда в строительстве)
  • Естественные ЭМ параметры воздушной среды
    Распределение электромагнитных полей (ЭМП) в воздушной среде зависит не только от инфраструктуры окружающего пространства, но и, в первую очередь, от её электромагнитных (ЭМ) параметров: электрической проводимости ув, магнитной рв и диэлектрической?в проницаемостей. Рассмотрим влияние этих параметров...
    (Проблемы электромагнитной безопасности на электрифицированной железной дороге)
  • Текущий учет естественного и миграционного движения населения
    Гражданский учет естественного движения населения начал действовать в странах мира со второй половины XIX в. Программы регистрации и разработки данных текущего учета были настолько разнообразны, что сводка данных для всех стран мира начала производиться только со второй половины XX в., а в 1970 г. была...
    (Демографическая статистика)
  • ПРОБЛЕМА СОЗДАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
    Исследователей искусственного интеллекта (ИИ), работающих над созданием мыслящих машин, можно разделить на две группы. Одних интересует чистая наука, и для них компьютер - инструмент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления. Интересы другой группы лежат в области...
    (Концепции современного естествознания)
  • Вредные компоненты пищи искусственного происхождения
    Вредные вещества в пище, имеющие по своей природе искусственное происхождение, можно поделить на две группы. 1. Вещества, образовавшиеся в результате кулинарной обработки. 2. Вещества, полученные в результате деятельности человека и загрязняющие пищевое сырье и продукты, Использование их в каких-либо...
    (Физиология питания)