Схема простого самодельного приемника прямого усиления для приема радиостанций в диапазоне коротких волн, выполнен на трех транзисторах КТ3102.

Приемники прямого усиления были очень популярны у радиолюбителей до 90-х годов. Потом уже не так. И все же, может быть кому-то будет интересна эта схема.

Приемник построен по схеме прямого усиления. Принимает радиостанции в диапазоне 25-52 метра, перекрывая основную часть радиовещательного КВ-диапазона.

Схема всего на трех транзисторах, но благодаря регулируемой ПОС в радиотракте можно достигнуть весьма неплохой чувствительности и избирательности, несмотря на настройку всего одним контуром.

Наилучшие результаты приемник дает в местностях, где нет мощных радиостанций на СВ-диапазоне. Это связано с тем, что мощная средневолновая радиостанция может существенно «забивать эфир» и избавиться от её влияния принимая КВ-сигналы такой простой схемой, может быть очень сложно.

Принципиальная схема

Принципиальная схема приведена на рисунке в тексте. Входного контура нет. Сигнал от антенны W1, в качестве которой можно использовать любой проводник, например, отрезок монтажного провода, через разделительный конденсатор С1 поступает на первый каскад УРЧ на транзисторе VT1, включенном по схеме с общей базой.

Рабочая точка транзистора задается соотношением сопротивлений резисторов R2 и R3, определяющих напряжение на его базе. Усиленный сигнал с коллектора через катушку связи L1 поступает на контур L2-C4, который является средством настройки приемника на станцию. В контуре используется переменный конденсатор от супергетеродинного приемника.

У этого конденсатора есть две секции по 6-240 пФ. Данные секции включены параллельно. В результате получается переменный конденсатор с перекрытием емкости 12-480 пФ.

Этого достаточно для перекрытия вышеуказанного диапазона, но можно использовать конденсатор и с меньшей максимальной емкостью, в этом случае перекрытие ограничится со стороны НЧ части КВ диапазона. С контура ВЧ сигнал поступает на базу VT2.

Рис. 1. Принципиальная схема простого коротковолнового приемника прямого усиления.

Через катушку L2 на базу VT2 так же поступает и постоянное напряжение смещения, полученное с делителя R4-R5. Диод VD1, включенный в эмиттерной цепи VT2 является детектором.

Более того, благодаря тому, что через данный диод протекает постоянный ток эмиттера VT2, точка детектирования смещена в более крутой участок ВАХ диода.

Продетектированный НЧ сигнал снимается с коллектора VТ2 и поступает через регулятор громкости R7 на однокаскадный УНЧ на VТЗ. В1 - это один наушник (головной телефон).

Теперь о ПОС (положительная обратная связь). Происходит она с эмиттера VТ2 на его базу через контур. Сигнал с эмиттера VТ2 через R6 и С4 поступает на коллектор VТ1, то есть, на катушку связи L1.

Глубина ПОС регулируется переменным резистором R6. Этим резистором можно регулировать состояние приемника от минимальной чувствительности до возникновения генерации. Оптимальный режим с точки зрения максимальной чувствительности и селективности получается на границе у порога самовозбуждения приемника.

Детали приемника

Катушки L1 и L2 намотаны на каркасе, склеенном из ватмана. Это пустая гильза диаметром 20 мм и длиной 40 мм. Сначала наматывают катушку L2. Она содержит 12 витков намоточного провода диаметром около 0,5 мм (например, ПЭВ 0,47). Затем на поверхность L2 нужно намотать L1, тем же проводом, 5 витков.

Обе катушки намотаны в одном направлении. Начала обмоток отмечены на схеме точками. L3 - дроссель, намотанный на ферритовом кольце диаметром 7 мм из материала 400НМ, 400НН, 600 НН, 600НМ. В нем 200 витков тонкого намоточного провода (например, ПЭВ0.12).

Питается приемник от батареи напряжением 9V. Приемник был сделан с чисто экспериментальными целями, потому он собран на макетной плате, и печатная плата для него не разрабатывалась.

Налаживание

Налаживание заключается в установке тока коллектора транзистора VТ2 в пределах 0,6-0,7 мА подбором сопротивления резистора R5. В крайне нижнем по схеме положении R6 схема должна переходить на самовозбуэдение, то есть, в режим генерации. Если этого не происходит - значит неправильно распаяна катушка L2 (поменяйте местами точки подключения её выводов).

На КВ диапазоне радиостанции занимают малые, в процентном отношении, участки шкалы, поэтому настройка получается очень острая. На ось переменного конденсатора нужно надеть пластмассовый шкив желательно большего диаметра, и вращать его очень и очень медленно.

В противном случае вы просто будете проскакивать радиостанции не замечая их, и создастся впечатление, что приема нет. В процессе настройки работают два органа - С4 и R6, конденсатором перестраиваете по диапазону, а резистором выбираете оптимальный режим. Процесс настройки на радиостанцию сложен, но весьма интересен.

Мне удавалось на данный аппарат, пользуясь антенной в виде монтажного провода, натянутого по диагонали комнаты, принимать станции Северной Америки и Западной Европы, и даже Австралии.

Конечно, качество приема, мягко говоря, странное. Особенно на пороге генерации, но разборчивость вполне нормальная.

Мы определили что, для увеличения чувствительности детекторного приемника можно применить принцип прямого преобразования частоты. Однако в этом случае часть выходного колебания (компоненту спектра с удвоенной частотой сигнала) приходится подавлять. Это означает, что мощность полезного сигнала на выходе умножителя (смесителя) будет в два раза меньше мощности сигнала на входе. Иными словами, коэффициент передачи смесителя не может превышать –3 дБ. В реальных схемах ситуация хуже за счет потерь в элементах умножителя. Активный умножитель (умножитель с усилением) ситуацию в корне не меняет, так как он усиливает не только сигнал, но и шум, а значит, коэффициент шума будет в лучшем случае останется точно таким же.

Для увеличения чувствительности радиоприемника (уменьшения коэффициента шума приемника) между входом синхронного детектора и выходом входного устройства приемника размещают малошумящий усилитель высокой частоты (УВЧ). Его коэффициент усиления рассчитывается по следующей формуле:

где U дет — напряжение на входе синхронного (квадратурного) детектора;
U а — напряжение на выходе антенны;
K вх. устр. — коэффициент передачи входного устройства.

Структурная схема приемника прямого усиления с квадратурным детектором, способным принимать сигнал с любым видом модуляции, приведена на рисунке 1.



Рисунок 1. Структурная схема радиоприемника прямого усиления

Применение усилителя высокой частоты позволяет поднять до нескольких десятков микровольт. Однако одновременно именно этот в основном будет определять . Здесь следует заметить, что схема, приведенная на рисунке 1, может быть определена и как схема прямого усиления, и как схема прямого преобразования. Все зависит от того, какой каскад будет определять избирательность по соседнему каналу и где будет сосредоточено основное усиление.

Если в схеме, приведенной на рисунке 1, основное усиление определяется усилителем низкой частоты, а избирательность по соседнему каналу обеспечивается ФНЧ на выходе квадратурного детектора, то эту схему рассматривают как . Выбор частотных параметров блоков схемы иллюстрируется рисунком 2.



Рисунок 2. Требования к характеристикам фильтров

Если же основная избирательность радиоприемника по соседнему каналу и его основное усиление, сосредоточено до квадратурного детектора, то ее рассматривают как приемник прямого усиления. В этом случае частотные параметры схемы радиоприемника выбираются в соответствии с рисунком 3.



Рисунок 3. Требования к характеристикам фильтров приемника прямого усиления

Так как в этом случае все параметры приемника определяются входным устройством и практически не зависят от параметров квадратурного детектора, то схему приемника прямого усиления можно представить в виде, показанном на рисунке 4.


Рисунок 4. Структурная схема приемника прямого усиления

Требования к фильтру низкой частоты квадратурного детектора в данной схеме значительно снижаются по сравнению со схемой прямого преобразования. Здесь фильтр низкой частоты должен подавить составляющие удвоенной частоты принимаемого радиосигнала и не исказить полезный сигнал.

В наихудшем случае расстройку частоты можно определить следующим образом:

и в этом случае расчет фильтра низкой частоты (ФНЧ) выполняется точно так же, как мы рассматривали в главе посвященной приемнику прямого преобразования.

Частотные параметры радиотракта приемника прямого усиления определяются рисунком 5. На этом рисунке показан спектр рабочего канала и спектры двух соседних радиоканалов. Полосовой приемника прямого усиления не должен искажать полезный сигнал и при этом подавлять спектр соседних каналов.



Рисунок 5. Частотные параметры радиотракта приемника прямого усиления

Известно, что расчет полосового фильтра ведется через расчет ФНЧ фильтра-прототипа, который рассчитывается точно также как и в случае приемника прямого преобразования. Воспользовавшись этими результатами можно определить, что потребуется полосовой фильтр не менее седьмого порядка.

Теперь определим, до какой частоты можно будет применять схему прямого усиления. Известно, что конструктивную добротность контура трудно получить больше 200. Учитывая, что у добротность контура с наибольшей добротностью отличается от добротности контура с наименьшей добротностью в пять раз, то для определения максимальной частоты воспользуемся добротностью:

Добротность контура определяется по следующей формуле:

Тогда максимальная рабочая частота для системы связи, использующих сигналы с полосой 9 кГц, может быть определена из следующего выражения:

Это означает, что область применения приемников прямого усиления ограничивается длинноволновым диапазоном. Радиолюбители применяют приемники прямого усиления и в средневолновом диапазоне, но это достигается за счет уменьшения подавления соседнего канала. Для систем профессиональной связи это неприемлемо.

Коэффициент усиления усилителя радиочастоты в схеме прямого усиления ограничивается внеполосными помехами, которые могут попасть на его вход и вызвать перегрузку. Приемники, собранные по схеме прямого усиления обычно разрабатываются на прием одной определенной частоты. Это обусловлено сложностью разработки перестраиваемого полосового фильтра. Принимаемая приемником прямого усиления частота определяется частотой настройки фильтра входного устройства. Учитывая, что данная схема применяется в основном в системах дистанционного управления, а они работают в СВЧ диапазоне, то в качестве частотно-избирательных цепей входного устройства обычно применяются фильтры на поверхностных акустических волнах.

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976
  2. "Радиоприемные устройства" под ред. Жуковского - М.: "Сов. радио" 1989
  3. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984

Вместе со статьей "Приемник прямого усиления" читают:

Основной функцией радиоприемного устройства является извлечение полезной информации из принимаемого сигнала...
http://сайт/WLL/DetPrm.php

Первые приемники прямого преобразования появились на заре развития радиотехники, когда ещё не было радиоламп...
http://сайт/WLL/PrmPrjamPreobr.php

Для того чтобы решить проблему роста необходимой добротности с ростом несущей частоты, стали разбивать задачу на два этапа - перестройка по диапазону частот, и обеспечение избирательности по соседнему каналу...
http://сайт/WLL/PrmSupGeter.php

При двойном преобразовании частоты сначала переносят группу каналов на первую промежуточную частоту, выделяют ее, а затем выделяют рабочий канал на второй промежуточной частоте. Этот процесс...
http://сайт/WLL/PrmDvPreobr.php

Ниже приведены однокаскадные усилители высокой часто­ты (УВЧ) с детекторами, образующие вместе с любой схемой УЗЧ радиоприемник прямого усиления. Однокаскадные УВЧ имеют активные схемы детекторов, а детекторы двухкаскад-ных УВЧ пассивные на основе диодной двухполупериодной схемы. Приемники могут работать в диапазоне длинных или средних волн, но можно ввести схему коммутации и получить двухдиапазонный радиоприемник.

Радиоприемник по схеме рис. 5.3 содержит один каскад усиления по высокой частоте на двух транзисторах VT1 и VT2. Транзистор VT2 включен по схеме с общим коллектором, VT1 - с общей базой. Одно из основных достоинств такого каскада состоит в том, что выходная цепь схемы слабо связана с входной и удается получить больший коэффициент усиления по сравнению со схемой на одном транзисторе. База транзисто­ра VT2 заземлена по высокой частоте с помощью конденсатора СЗ. Нагрузка каскада - высокочастотный дроссель L3. С кол­лектора транзистора VT1 модулированный высокочастотный сигнал через конденсатор связи С4 поступает на детектор, вы­полненный по схеме с общим коллектором на транзисторе VT3. Хотя детектор имеет коэффициент усиления по напряже­нию менее единицы, его коэффициент передачи все равно вы­ше, чем у диодного, а искажение низкочастотного сигнала ни­же. Цепочка С6, R5, С7 фильтрует низкочастотный сигнал, с резистора R6 через разделительный конденсатор СЮ он пода-

Рис. 5.3. Однокаскадный УВЧ ОК-ОБ с детектором на транзисторе по схеме с ОК

Рис. 5.4. Монтажная плата УВЧ (а) и приемы монтажа деталей на ней (б, в)

стся на резистор R7, служащий регулятором громкости, и да­лее с движка переменного резистора на вход УЗЧ. Питание схемы хорошо отфильтровано цепью R8, С8, С9.

Схема расположения деталей на монтажной плате показана на рис. 5.4. Опорными монтажными точками резисторов, кон­денсаторов, соединительных проводников и других деталей могут быть пустотелые заклепки (пистоны) или шпильки - отрезки медной луженоц проволоки диаметром 0,9… 1,3 мм, запрессованные в отверстия платы (рис. 5.4, б и рис. 5.4, в со­ответственно. На рис. 5.4, б показаны приспособления для раз­вальцовки пистонов и пример установки детали в них. В каче­стве приспособлений хорошо подходят заточенные на наждаке дюбели, применяемые для строительных работ. Один из них зажимают в тисках, а другим с помощью легких ударов мо­лотка развальцовывают пистон. Пистонами могут быть пред­варительно нарезанные отрезки медных трубок, длина кото­рых на 0,6…1,5 мм превышает толщину платы. Можно изго­товить подобные пистоны из медной пластины или луженой жести толщиной 0,5…0,8 мм. Диаметр отверстий в плате же­лательно выбрать в диапазоне 2…3 мм.

Для запрессовки шпилек в отверстия плат также использу­ют приспособление - стальной пруток с направляющим от­верстием в торце (рис. 5.4, в). С помощью этого приспособле­ния шпильку направляют в отверстие платы, диаметр которо­го примерно на 0,1 мм меньше диаметра шпильки, и запрессо­вывают ее ударом молотка. На рис. 5.4, в даны размеры приспособления для запрессовки шпилек диаметром 1 мм и длиной 10 мм в плату толщиной 1,5…2 мм.

Схема радиоприемного устройства (рис. 5.5) состоит из од-нокаскадного усилителя высокой частоты на транзисторах VT1, VT2, образующих так называемую каскодную схему. Первый транзистор усилителя VT2 включен по схеме с общим эмиттером, а второй VT1 - с общей базой. В результате вход и выход каскада хорошо развязываются друг от друга и удается получить достаточный коэффициент усиления по напряжению даже при использовании одного каскада усиления по высокой частоте. Нагрузкой транзистора VT1 является трансформатор L3, L4. Трансформатор высокой частоты использован для того, чтобы получить два противофазных напряжения высокой час­тоты, необходимых для работы активного двухполупериодного детектора на транзисторах VT3, VT4. Коэффициент гармоник детектора значительно меньше, чем диодного, а коэффициент передачи выше. После фильтрации цепью С7, R9, С8 напряже­ние звуковой частоты через разделительный конденсатор СИ поступает на регулятор громкости R11. Питание схемы осуще­ствляется через фильтр R10, С9, СЮ.

Соединения деталей этого УВЧ показаны на рис. 5.6. Емко­сти конденсаторов СЗ-С6 могут быть в диапазоне от 6800 пФ до 0,068 мкФ. Транзисторы КТ315 могут быть с любыми бук­венными индексами. Их можно заменить аналогичными им транзисторами серий КТ312, КТ316, КТ342, КТ358 с коэффи-

Рис. 5.5. Однокаскадный УВЧ ОЭ-ОБ с двухполупериодным детектором на транзисторах

циентом передачи не менее 50. Желательно, чтобы коэф­фициенты передачи транзисторов VT1, VT2 отличались не бо­лее чем на 20%, а VT3 и VT4 были как можно более близкими.

Катушки высокочастотного трансформатора L3 и L4 намо­таны проводом ПЭВ-1 0,08…0,1 мм на ферритовом кольце ти­поразмера К7 X 4 X 2 (внешний диаметр 7 мм, внутренний - 4 мм, а высота - 2 мм). Катушка L3 содержит 250 витков, ка­тушка L4 намотана в два провода и содержит 100 витков. За­тем начало одной обмотки соединяют с концом другой, таким образом получают средний вывод катушки L4. Для удобства намотки провода на ферритовое кольцо изготовьте специальное приспособление - челнок. На челнок наматывайте провод та­кой длины, чтобы с небольшим запасом хватило на всю катуш­ку. Витки старайтесь укладывать плотно друг к другу и следи­те за тем, чтобы провод при намотке не закручивался в петли.

Высокочастотный трансформатор в последнюю очередь монтируют на печатной плате, прикрепив небольшим количе­ством клея, например клеем «Момент».

После проверки монтажа подключите магнитную антенну, усилитель звуковой частоты и включите питание радиоприем­ника. Проверьте режимы работы каскадов по постоянному то­ку и, если необходимо, подберите резисторы R1, R5. Если при­емник работоспособен, удастся настроиться на одну из мощ­ных радиостанций. При самовозбуждении приемника (сопро­вождается свистами и сильными искажениями передачи), попробуйте удалить магнитную антенну от катушек L3, L4 вы­сокочастотного трансформатора, или поменяйте местами выво­ды катушки L3.

Укладку диапазонов ведите с помощью заводского радио­приемника, имеющего требуемый диапазон (ДВ или СВ).

Особенностью радиоприемника (рис. 5.7) является приме­нение усилительного каскада на полевом транзисторе VT1. Высокое входное сопротивление полевого транзистора позво­ляет полностью включить колебательный контур во входную цепь и тем самым увеличить сигнал на входе усилителя высо­кой частоты. Усиленный сигнал с нагрузки усилителя VT1 - резистора R1 поступает на вход прецизионного детектора на операционном усилителе и диодах VD1, VD2. Диоды VD1, VD2 включены в цепь обратной связи операционного усилителя. Такая схема позволяет в широких пределах изменять коэффи­циент передачи детектора с помощью переменного резистора R4. В нижнем (по принципиальной схеме) положении движка

Рис. 5.7. Однокаскадный УВЧ на полевом транзисторе с детектором на операционном усилителе

резистора коэффициент передачи максимален, а в верхнем - минимален. Резистор R4 является регулятором громкости. По­сле фильтрации цепочкой Кб, С7 низкочастотный сигнал по­ступает на вход усилителя звуковой частоты. Питание высоко­частотного каскада и детектора поступает через развязываю­щий фильтр К7, С4, С5.

Схема соединения деталей на монтажной плате изображена на рис. 5.8. Полевой транзистор VT1 смонтирован выводами кверху, а требуемые выводы ОУ DA1 удлинены голым мон­тажным проводом.

Налаживание начинают с установки режимов УВЧ по по­стоянному току. Они установятся автоматически, если на сто­ке пол;ёвого транзистора VT1 будет напряжение +4,3 В. Реко­мендуемый режим работы транзистора установите подбором резистора К2.

При подключении усилителя звуковой частоты учтите, что на выходе УВЧ имеется постоянное напряжение. Подключайте его через переходной конденсатор емкостью 2,2…4,7 мкФ. Ес­ли конденсатор оксидный, его плюсовой вывод соединяют с выходом УВЧ.

Рис. 5.8. Монтажная плата

Двухкаскадные усилители высокой частоты (схемы, изо­браженные на рис. 5.9, 5.11, 5.13) состоят из магнитной ан­тенны W1, усилительных каскадов и диодного детектора VD1, VD2, включенного по схеме удвоения напряжения. Напряже­ние низкочастотного сигнала с выхода детектора фильтруется дополнительной RC-цепочкой и выделяется на нагрузке - пе­ременном резисторе, являющемся регулятором громкости. С данными схемами можно применять любой усилитель звуко­вой частоты, описанный ранее.

Рис. 5.9. Двухкаскадный УВЧ из идентичных каскадов по схеме с ОЭ

Схемы, изображенные на рис. 5.9, 5.13, имеют чувстви­тельность 10…20 мВ/м и позволяют принимать мощные радио­станции в диапазонах длинных 750…2000 м (400… 150 кГц) или (и) средних волн 187…570 м (1600…525 кГц), удаленные на расстояние 100…250 км. В схеме рис. 5.11 за счет резонанс­ных цепей во всех каскадах чувствительность поднята до 5…7 мВ/м. В результате радиус действия приемника составля­ет 300…500 км.

Следует заметить, что чувствительность схем, изображен­ных на рис. 5.9, 5.13, также может улучшена до 7…8 мВ/м за счет включения резонансной цепи во втором каскаде усилите­ля. Такой цепью может служить высокочастотный широкопо­лосный дроссель L5, примененный в схеме, приведенной на рис. 5.11.

Увеличить радиус действия всех приемников можно под­ключением наружной антенны.

Катушка L1 и конденсатор переменной емкости С2 образу­ют колебательныйконтур, настраиваемый на сигналы радиове­щательных станций. Чтобы сравнительно низкоомный вход усилителей (входное сопротивление составляет единицы кило-ом) не шунтировал колебательный контур (сопротивление кон­тура при настройке на сигнал принимаемой станции составля­ет сотни килоом), высокочастотное напряжение подается с ка­тушки связи L2, расположенной на стержне магнитной антен­ны и образующей с катушкой L1 понижающий трансформатор. В результате можно установить выгоднейшую связь контура с усилителем, подбирая число витков катушки связи и расстоя­ние между нею и контурной катушкой L1 магнитной антенны.

Схема УВЧ, изображенная на рис. 5.9 усилителя высокой частоты состоит из двух идентичных каскадов усиления по схеме с общим эмиттером. Здесь используется высокоэффек­тивный способ температурной стабилизации режима работы транзистора. Кроме того, каскад малочувствителен к смене транзисторов, имеющих технические характеристики в преде­лах, заданных техническими условиями.

Конденсаторы С5, С7 в каскадах устраняют отрицательную обратную связь по переменному току между эмиттером и базой транзистора. Их емкость должна быть такой, чтобы сопротив­ление переменному току на самой низп1ей частоте рабочего диапазона было намного меньше сопротивления резистора R4 (R8). На практике величина емкости может лежать в диапазо­не 4700…68000 пФ.

Режимы работы каждого из каскадов по постоянному току независимы друг от друга и могут быть изменены подбором ре­зисторов R1, R5. Ток коллектора каждого из каскадов выбран равным 1 мА. Однако контролировать режимы транзисторов удобнее, измеряя не ток, а напряжение на их электродах. На схемах указаны напряжения, измеренные относительно обще­го («заземленного») проводника приемника вольтметром с от­носительным сопротивлением более 10 кОм/В.

Связь между каскадами, также, как и между катушкой связи и магнитной антенной - емкостная через конденсатор связи С4.

Рис. 5.10. Размещение элементов и печатная плата двухкаскадного УВЧ из идентичных каскадов

Рис. 5.11. Двухкаскадный УВЧ с трансформаторной связью

самовозбуждения приемника размещайте как можно дальше от магнитной антенны WA1 и конденсатора переменной емкости С2. При малых габаритах печатной платы часть платы, на кото­рой размещен детектор, возможно придется закрыть латунным или алюминиевым экраном, соединенным с общим проводом.

В схеме рис. 5.11 применены усилительные каскады, схо­жие с предыдущим УВЧ. Однако связь между первым и вто­рым каскадом трансформаторная. Трансформатор высокой частоты (катушки трансформатора L3 и L4) позволяет гораздо лучше, чем в схеме с резисторами в цепи коллектора согласо­вать относительно большое выходное сопротивление первого каскада с малым входным сопротивлением второго каскада усилителя колебаний высокой частоты. Коллекторной нагруз­кой транзистора VT2 является высокочастотный дроссель L5. Создающееся на нем напряжение модулированного сигнала ра­диовещательной станции подается через конденсатор связи Сб на вход детекторного каскада. Как указывалось выше, детек­торный каскад собран по схеме удвоения напряжения. По сравнению с однодиодным, такой детектор позволяет значи­тельно повысить уровень сигнала на выходе приемника, а зна­чит и громкость приема радиостанций.

Режим работы каскадов по постоянному току задается в каждом каскаде независимо с помощью делителей R1, R2 и R4, R5 в их базовых цепях и резисторов R3, R5 в цепях эмит­теров. Режим работы первого каскада устанавливается (при

Рис. 5.12. Монтажная плата

Рис. 5.13. Двухкаскадный УВЧ ОК-ОЭ

необходимости) изменением сопротивления резистора R1, вто­рого - резистора R4.

Применение резонансных цепей в коллекторах каскадов усилителей позволяет получить неплохие чувствительность и избирательность приемника прямого усиления, однако требу­ют больших усилий при наладке.

Поскольку с данным УВЧ можно провести целый ряд экс­периментов, требующих перепайки деталей, они размещены на монтажной плате, показанной на рис. 5.12.

Катушки трансформатора L3 и L4 и высокочастотный дрос­сель L5 намотаны проводом ПЭВ 0,08…0,1 на ферритовых кольцах марки 600НН или 1000НН с внешним диаметром 7 и высотой 2 мм (типоразмер К7 х 4 х 2). Катушка L3 содержит 250, катушка L4 - 100, дроссель L5 - 250 витков. Перед на­моткой следует скруглить острые кромки колец наждачной шкуркой, чтобы не повредить изоляцию провода.

В схеме рис. 5.13 усилитель высокой частоты апериодиче­ский двухкаскадный. В первой схеме транзистор VT1 включен по схеме с общим коллектором, а VT2 - с общим эмиттером. Возможный вариант печатной платы с размещением элементов представлен на рис. 5.14.

Структурная схема такого приемника может быть представлена следующим образом (рис. 1.1).

В состав приемника прямого усиления входят:

Входная цепь, обеспечивающая связь антенно-фидерной системы с первым каскадом приемника;

Усилитель радиочастоты, обеспечивающий необходимое усиление на радиочастоте и частотную избирательность приемного устройства;

Амплитудный детектор;

Усилитель звуковой (видео) частоты. Как правило, этот усилитель обеспечивает основное усиление сигналов.

В том случае, когда в схеме отсутствует усилитель радиочастоты, такой приемник называется детекторным приемником.

Следует отметить, что приемники прямого усиления обладают малой чувствительность в силу того, что при малых сигналах амплитудный детектор обладает малым коэффициентом передачи по мощности, что приводит к возрастанию коэффициента шума приемного устройства.

К недостаткам приемников прямого усиления следует отнести:

Изменение основных параметров радиотракта при перестройке по диапазону, в первую очередь изменяется полоса пропускания радиоприемного тракта. Действительно, полоса пропускания приемника определяется по


формуле , где - частота настройки колебательного контура, - коэффициент затухания колебательного контура (этот показатель слабо зависит от частоты настройки колебательного контура). Как следует из представленной формулы, с увеличением частоты настройки будет увеличиваться и полоса пропускания.

Если в радиотракте необходимо перестраивать одновременно несколько контуров, то появляются дополнительные трудности, связанные с системой настройки, если требуется получить хорошую избирательность по соседнему каналу;

Трудность получения большого коэффициента усиления на радиочастоте, обычно коэффициент усиления на радиочастоте не превышает 100. Для этих целей применяются усилители радиочастоты двух типов: регенеративного типа и сверхрегенеративного типа. Усилитель регенеративного типа позволяет получить большой коэффициент усиления при малом числе активных элементов, но отличается большой нестабильностью коэффициента усиления. Сверхрегенеративные усилители более устойчивы к внешним условиям, но обладают большим коэффициентом шума.

На высоких частотах трудно обеспечить высокую избирательность по соседнему каналу при перестройке по частоте в широких пределах.

Приемники прямого усиления в настоящее время применяются в основном как индикаторы электромагнитного поля.

Линейная (высокочастотная) часть приемника представляет собой входную цепь и УВЧ, низкочастотная часть приемника – УНЧ.

Высокочастотная часть приемника содержит резонансные элементы, которые выделяют требуемый сигнал из множества других сигналов. В УВЧ, кроме селекции, также осуществляется и усиление сигнала.


Особенностью такого приемника является то, что фильтрация полезного сигнала по частоте, его усиление и детектирование осуществляется на несущей частоте принимаемого сигнала , поэтому его и называют приемником прямого усиления.

Принцип работы приемника прямого усиления .

Принятый антенной радиосигнал (как правило, смесь сигнала и помехи) через входную цепь поступает на вход усилителя высокой частоты. Здесь сигнал усиливается одним или несколькими каскадами.

Выходной сигнал УВЧ и поступает на вход детектора, где преобразуется в сигнал U Д (t)=U с (t)+U п (t), где U c (t) – сигнальная (полезная) составляющая, а U п (t) – помеховая составляющая, искажающая сообщение.

УНЧ усиливает сигнал U Д (t) до уровня, необходимого для нормальной работы выходного устройства (телефонов).

В некоторых приемниках при достаточной мощности входного сигнала детектор подключается непосредственно к входной цепи. Такие при­емники называются детекторными. Детекторные приемники име­ют низкую чувствительность и плохую избирательность, поэтому они нашли ограниченное применение.

Достоинствами приемников прямого усиления являются их простота, отсутствие дополнительных ка­налов приема.

Недостатками таких приемников являются: широкая полоса пропускания на высокой частоте; низкая чувствительность из-за высокого коэффициента шума; отличие формы АЧХ, в пределах диапазона рабочих частот, от прямоугольной; сложная перестройка по частоте.

Супергетеродинный приемник .

Недостатков приемника прямого усиления лишен супергетеродинный приемник (с преобразованием частоты).

Структурная схема супергетеродинного приемника представлена на рисунке 5.

Приемник состоит из входной цепи (ВЦ), усилителя высокой (радио) частоты, преобразователя частоты (ПЧ) (смеситель и гетеродин), усилителя промежуточной частоты (УПЧ), детектора и усилителя низкой (звуковой) частоты (УНЧ). Для повышения чув­ствительности и избирательности в данном приемнике, как правило, используется УВЧ с настраиваемым контуром.

Назначение ВЦ, УВЧ, детектора и УНЧ аналогично приемнику прямого усиления.



Известно, что в радиоприемниках, на высокой частоте, достаточно сложно технически обеспечить требуемую форму АЧХ, узкую полосу пропускания и большой коэффициент усиления. Однако эти сложности устраняются с помощью преобразования частоты, когда радиосигнал переносят на более низкую частоту называемую промежуточной .

Принципиальной особенностью супергетеродинного приемника является то, что частотная селекция полезного сигнала, основное усиление и его детектирование осуществляется на постоянной частоте, значительно меньшей частоты принимаемого сигнала , называемой промежуточной частотой.

В супергетеродинном приемнике перенос принимаемого радиосигнала на промежуточную частоту осуществляют с помощью преобразователя частоты.

ПЧ обеспечивает перенос спектра принимаемого радиосигнала с частоты на более низкую промежуточную частоту .

Структурная схема преобразователя частоты представлена на рисунке 6. На схеме: СМ – смеситель, Г – гетеродин, УПФ – узкополосный фильтр.

Рис. 5. Структурная схема супергетеродинного приемника

Рис. 6. Структурная схема преобразователя частоты

Характер преобразований, производимых в ПЧ, иллюстрируется аналитическими выкладками, представленными ниже.

Если радиосигнал, поступающий на вход ПЧ обозначить (для примера рассмотрим АМ-радиосигнал), а сигнал гетеродина , то на выходе СМ (рис. 6) будет сформирован сложный сигнал, содержащий составляющие как суммарной, так и разностной частоты:

где: k – коэффициент пропорциональности.

С помощью УПФ выделяется только составляющая на частоте . В результате на выходе преобразователя частоты формируется сигнал , спектр амплитуд которого показан на рисунке 7.

Особенность работы преобразователя частоты заключается в том, что он всегда формирует сигнал с частотой , и не реагирует на знак разности, хотя частота может быть больше или меньше . Изменять частоту выходного сигнала ПЧ можно путем изменения частоты, что очень упрощает настройку приемника на частоту сигнала .

Поскольку преобразователь частоты не способен определять знак разности частот сигналов f c и f г, поступающих на смеситель, то приемник может одновременно принимать радиосигналы нужной станции - с частотой и мешающей станции – с частотой зеркального канала, где . При этом частоты и располагаются на частотной оси симметрично (зеркально) относительно частоты гетеродина (рис. 7).


Поэтому, при наличии помехи с частотой f з, она, как и сигнал попадает в полосу пропускания УПЧ.

Для подавления помехи на зеркальной частоте используются специальные меры:

Полоса пропускания УВЧ выполняется такой, что не превышает 2f пр;

На входе УВЧ размещается синхронно перестраиваемый с УВЧ режекторный фильтр с частотой подавления f з;

В состав линейной части приемника включается специальная схема компенсации зеркальной помехи;

В приемнике используется двукратное или трехкратное преобразование частоты для повышения его избирательности.

На работу супергетеродинного приемника также могут оказывать негативное влияние и помехи на промежуточной частоте. Для уменьше­ния влияния таких помех, в приемнике используются заградительные (режекторные) фильтры.

Необходимо также отметить, что: результирующая АЧХ приемника получается в результате перемножения АЧХ УВЧ, СМ и УПЧ; коэффициент усиления линейной части приемника равен произведению коэффициентов усиления УВЧ, СМ и УПЧ. Полоса пропускания линейной части приемника определяется самым узкополосным элементом - УПЧ. При этом частота настройки и полоса пропускания УПЧ являются постоянными и при перестройке не меняются.

Таким образом, к достоинствам приемника можно отнести высокую избирательность и чувствительность, а к недостаткам - сложность, наличие кроме основного и побочных каналов приема (зеркального канала, канала на ).