(Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!


Сточные воды ТЭС и их очистка 1. Классификация сточных вод ТЭС Эксплуатация тепловых электрических станций связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и др.

Сточной водой является любой поток воды, выводимый из цикла электростанции.

К сточным, или сбросным, водам кроме вод систем охлаждения относятся: сбросные воды систем гидрозолоулавливания (ГЗУ), отработавшие растворы после химических промывок теплосилового оборудования или его консервации: регенерационные и шламовые воды от водоочистительных (водоподготовительных) установок: нефтезагрязненные стоки, растворы и суспензии, возникающие при обмывах наружных поверхностей нагрева, главным образом воздухоподогревателей и водяных экономайзеров котлов, сжигающих сернистый мазут.

Составы перечисленных стоков различны и определяются типом ТЭС и основного оборудования, ее мощностью, видом топлива, составом исходной воды, способом водоподготовки в основном производстве и, конечно, уровнем эксплуатации.

Воды после охлаждения конденсаторов турбин и воздухоохладителей несут, как правило, только так называемое тепловое загрязнение, так как их температура на 8…10 °С превышает температуру воды в водоисточнике. В некоторых случаях охлаждающие воды могут вносить в природные водоемы и посторонние вещества. Это обусловлено тем, что в систему охлаждения включены также и маслоохладители, нарушение плотности которых может приводить к проникновению нефтепродуктов (масел) в охлаждающую воду. На мазутных ТЭС образуются сточные воды, содержащие мазут.

Масла могут попадать в сточные воды также из главного корпуса, гаражей, открытых распредустройств, маслохозяйств.

Количество вод систем охлаждения определяется в основном количеством отработавшего пара, поступающего в конденсаторы турбин. Следовательно, больше всего этих вод на конденсационных ТЭС (КЭС) и АЭС, где количество воды (т/ч), охлаждающей конденсаторы турбин, может быть найдено по формуле Q=KW где W - мощность станции, МВт; К-коэффициент, для ТЭС К= 100…150: для АЭС 150…200.

На электростанциях, использующих твердое топливо, удаление значительных количеств золы и шлака выполняется обычно гидравлическим способом, что требует большого количества воды. На ТЭС мощностью 4000 МВт, работающей на экибастузском угле, сжигается до 4000 т/ч этого топлива, при этом образуется около 1600…1700 т/ч золы. Для эвакуации этого количества со станции требуется не менее 8000 м3/ч воды. Поэтому основным направлением в этой области является создание оборотных систем ГЗУ, когда освободившаяся от золы и шлака осветленная вода

Сточные воды от разных источников очищают соответствующими методами.

· От систем охлаждения теплоэнергетического

оборудования

Применяют оборотные системы охлаждения: с градирнями,

с брызгальными устройствами, с прудом-охладителем. С внедрением оборотных систем охлаждения происходит ухудшение качества воды в процессе испарения и капельного уноса, которое существенно ухудшает технико-экономические показатели работы теплоэнергетического оборудования.

Для борьбы с биологическими обрастаниями и минеральными отложениями в трубках конденсаторов используют следующие методы: механические (резиновые шарики, циркулирующие в трубках конденсаторов); электромагнитную обработку воды; химические (подкисление, декарбонизация, обработка фосфатами – ОЭДФК, хлором и т.д.).

Применяют метод поддержания оптимального солевого баланса в системе, направляя продувочные воды градирен на ВПУ для подготовки подпиточной воды теплосети (этот вариант применен на многих ТЭЦ).

К биологическим методам борьбы относится, в частности, разведение растительноядных рыб в водоемах (в системе с прудами-охладителями). Если в системы охлаждения не производится сбросов других видов сточных вод, то практически с химической стороны они не угрожают водоемам. Однако следует сказать, что в системы охлаждения обычно включаются также и маслоохладители турбин, что часто приводит к перетоку масла в охлаждающую воду, которое затем попадает в водоемы. В последнее время используют надежные пластинчатые маслоохладители, снявшие и эту проблему.

· От водоподготовок и конденсатоочисток

С экономической точки зрения, основным направлением по сокращению количества сбрасываемых солей с установок ВПУ является применение современных технологий обработки воды со сниженными расходами реагентов.

При обработке стоков ВПУ следует различать две группы сточных вод: сбросы с установок предочистки и сбросы с установок обессоливания.

Методы предочистки органично входят в существующие схемы ВПУ и должны сохранять свое значение и в ближайшей перспективе. Важным преимуществом предочистки перед другими методами, с точки зрения охраны водоемов, является то, что сбрасываемые примеси находятся в воде в виде осадков. Это значительно упрощает их отделение от воды.

Наиболее предпочтительны схемы обработки продувочной воды осветлителями, при использовании которых осветленная продувочная вода может быть возвращена обратно в ВПУ. С точки зрения уменьшения габаритов площадей, занятых под установку нейтрализации и утилизации шлама, наиболее интересна схема с возвратом продувочной воды в ВПУ без ее нейтрализации и с обезвоживанием шлама на пресс-фильтрах или барабанно-вакуумных фильтрах. При этом на ВПУ может быть возвращено максимально возможное из всех вариантов количество осветленной воды, а следовательно, возможные расходы реагентов на предочистке и количество сбрасываемых примесей (в частности, в виде шлама) будут минимальны. В этом случае также существенно сокращаются площади, необходимые для организации шламоотвала. В России в свое время проводили опытно-промышленные испытания по обжигу шлама осветлителей в аппаратах погружного горения и получению из него вновь извести, которую можно опять использовать в схеме ВПУ. Широкого применения этот метод не нашел из экономических соображений. В настоящее время, как правило, продувочные воды подвергают отстою, после чего осветленная вода возвращается в цикл, а концентрированный шлам с частью воды направляется через систему ГЗУ на золоотвал.

Если не считать некоторого количества грубодисперсных примесей, поступающих в сточные воды с обессоливающей части ВПУ при взрыхлении фильтров, эти воды представляют собой истинные растворы солей, что в значительной мере затрудняет задачу их обработки. Это относится и к продувочным водам испарителей и паропреобразователей.

В настоящее время такие сточные воды в зависимости от местных условий рекомендуется направлять: 1) в водоемы с соблюдением санитарно-гигиенических и рыбохозяйственных требований к качеству воды водоема в расчетном растворе; 2) в систему гидрозолоудаления с использованием на нужды гидротранспорта и золы и шлама; 3) в пруды-испарители при благоприятных климатических условиях; 4) на выпарные установки; 5) в подземные водоносные горизонты, не пригодные для хозяйственных целей и надежно изолированные от подземных вод, используемых для водоснабжения. Промывочные воды электромагнитных фильтров сбрасываются в золо- и шламоотвалы.

При сбросе сточных вод ВПУ следует учитывать их резкопеременный расход и значительные колебания значений рН. Поэтому рекомендуется собирать сточные воды ВПУ в специальные баки-усреднители. Емкость таких баков надо выбирать с учетом циклов регенераций фильтров. При сбросе сточных вод ВПУ в системе гидрозолоудаления (ГЗУ) эти воды не должны изменять состав воды, циркулирующей в системе, т.е. не приводить к появлению отложений.

Однако наибольшее распространение получил процесс нейтрализации известковым молоком, так как в этом случае не столь резко повышается солесодержание, как при применении других реагентов. Объясняется это тем, что нейтрализация известью сопровождается образованием осадка, который может быть выведен из воды.

Технологический процесс нейтрализации состоит в заполнении баков-нейтрализаторов кислыми и щелочными водами, подаче определенного количества нейтрализующего реагента и перемешивания жидкости в баке до установления постоянного значения рН нейтрализованной воды.

Для снижения выбросов на ВПУ повторно используют взрыхляющие, регенерационные и промывочные воды. Однако существенно сократить сбросы можно лишь в случае применения современных технологий обработки воды (противоточные и двухпоточно-противоточные схемы ионирования), которые позволяют снизить расход реагентов (кислоты и щелочи) до 1,5 стехиометрий по отношению к количеству задержанных солей. Эти технологии в различных модификациях широко и давно применяются за рубежом и все большее применение находят и в России. Обессоливающая установка по данной технологии длительное время находится в эксплуатации на Волжской ТЭЦ-2, при этом удельные расходы реагентов составляют 1,7…1,8 г-экв./ г-экв.

Значительно отличаются от химического обессоливания мембранные технологии обессоливания воды (электродиализ и обратный осмос). В этом случае обессоливание происходит практически без применения реагентов, только за счет ионообменных мембран, т.е. в природу возвращают то же количество солей, которое было взято из нее с водой, но только в более концентрированном виде (в меньшем количестве воды). Необходимо иметь в виду, что мембранные технологии очистки воды экономически целесообразны, как правило, при низком качестве исходной воды в 2…4 раза худшем, чем средняя вода. Установка обратного осмоса (УОО) производительностью 50 м3/ч находится в эксплуатации на Воронежской ТЭЦ. Предварительная очистка воды перед подачей ее на УОО осуществляется на предочистке (коагуляция с известкованием и очистка от взвешенных на механических фильтрах) и последующем умягчении на Na-катионных фильтрах. Одноступенчатая электродиализная установка (УЭО-100-4/25) производительностью 100 м3/ч позволила, например, снизить содержание солей в воде на 75 \%. Принципиальная схема ХВО на базе электродиализных установок строится по принципу: предочистка; доочистка на фильтрах тонкой очистки; обессоливание на электродиализных установках; доочистка на ионообменных фильтрах и ФСД.

Широкое применение в энергетике (как в России, так и за рубежом) нашел метод подготовки добавочной воды паровых котлов с использованием испарителей. Наиболее перспективными и оптимальными с экономической точки зрения являются испарители мгновенного вскипания (ИМВ). Перед подачей воды на испарители необходима такая же предварительная очистка, как и для УОО.

Применяемый в настоящее время практически на всех российских электростанциях с прямоточными котлами кислородный водно-химический режим позволяет увеличить фильтроцикл фильтров конденсатоочистки (БОУ) в 3…5 раз, снижая тем самым сбросы в окружающую среду в такое же количество раз.

· от нефтепродуктов

Отстаивание – наиболее распространенный метод выделения нефтепродуктов из сточных вод различных предприятий. Главные причины этого – самопроизвольность, экономичность процесса и кажущаяся очевидной простота расчета и проектирования отстойных сооружений.

Флотация дисперсных частиц из сточных вод основана на способности их закрепляться на погруженной в воду гидрофобной поверхности. В качестве такой поверхности обычно используют поверхность пузырьков газа, которым до этого насыщают обрабатываемую жидкость. Всплывающие или образующиеся в объеме жидкости пузырьки захватывают частицы и транспортируют их к поверхности, откуда частицы удаляют в виде концентрата.

Насыщение воды воздухом в установках напорной флотации производят растворением его под давлением в напорных резервуарах. Сточную воду забирают насосом из накопительного резервуара и подают в напорный бак. На линии рециркуляции воды из напорного патрубка насоса во всасывающий патрубок установлен воздушный эжектор, подающий воздух в объеме 3…5\%-го расхода воды через насос. Сжатая в насосе паровоздушная смесь выдерживается в напорном резервуаре в течение 3…5 мин, после чего через дросселирующую арматуру подается во флотоотстойник, где пузырьки, проходя через слой воды, флотируют частицы нефтепродуктов.

Средняя эффективность очистки воды по схеме напорной флотации в таких флотоотстойниках при давлении в напорном резервуаре 4,0…4,5 кгс/см2 и с применением коагуляции составляет около 88 \%.

Фильтрование обычно используют на заключительных стадиях очистки сточных вод и на этом основании его часто относят к методам доочистки. Однако метод фильтрования может быть с успехом использован и в качестве основного, если концентрация нефтепродуктов в сточных водах, подаваемых на очистку, не превышает 10…20 мг/дм3.

Процесс фильтрования сточных вод, загрязненных нефтепродуктами, основан на адгезии (прилипании) эмульгированных капель нефтепродуктов к поверхности зерен фильтрующего материала. В общем случае процесс фильтрования определяется множеством технологических параметров, в первую очередь свойствами пористой и фильтруемой сред, гидродинамическими режимами процесса и температурой.

При фильтровании частицы масла улавливаются слоем, заполняя часть объема пор и насыщая этот объем. Увеличение насыщения приводит к тому, что фильтрующий материал не в состоянии удержать захваченное масло и оно в виде пленки стекает по стенкам канала слоя в направлении потока. В какой-то момент времени в сечении слоя устанавливается равновесие между количеством масла, выделяющегося из потока на поверхность слоя, и количеством масла, стекающего из этого объема в виде пленки в более глубокие слои. При этом концентрация достигает критического значения, которое можно считать максимальным насыщением слоя маслом при данных условиях проведения процесса фильтрования. С течением времени фронт максимальной насыщенности сдвигается к нижней границе слоя и концентрация масла в фильтрате увеличивается. Это служит сигналом к отключению фильтра на регенерацию, если он не отключается по перепаду давления воды.

В схемах очистных сооружений тепловых электростанций в более или менее полном объеме представлены описанные выше методы очистки воды от нефтепродуктов. Загрязненные нефтепродуктами сточные воды собираются в усреднительный бак, рассчиты-ваемый обычно на двухчасовую производительность сооружений.

В баке происходит первичное отстаивание грубодисперсных нефтепродуктов и тонущих примесей (песка, продуктов коррозии и др.). Удаление всплывших нефтепродуктов производят через воронку, устанавливаемую на поплавке, а осевших примесей – через патрубок в нижней части бака. После первичного отстоя сточные воды направляются в нефтеловушку. Очищенная в нефтеловушке вода сливается в промежуточный бак и насосом подается в установку напорной флотации, после которой подвергается очистке в двух степенях фильтрования. Обычно в качестве первой ступени используют фильтры, загруженные антрацитом. Во второй ступени очистку производят на фильтрах активированного угля. Отмывку загрязненных фильтров производят горячей водой со сбросом ее в усреднительный бак.

Емкость поглощения нефтепродуктов, г/г, для различных марок активированных углей в среднем составляет: АГ-5 – 0,15; АГ-3 – 0,08; АП-3 – 0,06; БАУ – 0,04; березовский – 0,03. Как видно, наибольшей емкостью обладает уголь марки АГ-5, емкость же остальных намного ниже и примерно одного порядка. Учитывая дефицит активированных углей и их высокую стоимость, ведут поиски других сорбентов. В настоящее время взамен активированного угля предлагается биоадсорбент С-верад, не уступающий ему по емкости поглощения и в несколько раз дешевле. Поскольку С-верад иммобилизует бактерии, перерабатывающие нефтепродукты в активный ил, через определенное время в отработанном адсорбенте нефти не остается, поэтому проблем с его утилизацией не возникает.

При применении реагентной флотации сооружения дополняются реагентным хозяйством (коагулянтом), аналогичным химводоочисткам. Подачу коагулянта производят перед флотоотстойником (в энергетике схемы с применением коагулянта не нашли широкого применения из-за отсутствия существенного эффекта в его применении). Выделенные в установках сооружений нефтепродукты и осадок собирают в специальные баки, откуда перекачиваются насосами на обезвреживание (сжигание, захоронение).

Оптимальным типом сооружений как с точки зрения экономики, так и с учетом получаемого качества очистки являются: отстой, флотация, механические фильтры и фильтры активированного угля, регенерируемые паром – все аппараты выполняются из металла в наземном исполнении. Эта схема позволяет получить качество очищенной воды не более 1 мг/дм3 , при нефтесодержании подаваемой на очистку воды до 100 мг/дм3 .

· ОТ обмывок РВП и поверхностей нагрева котлов

Учитывая наличие токсичных веществ в этих сточных водах, необходимо до сброса в водоем предусмотреть их нейтрализацию и обезвреживание. Обмывочные воды направляют в баки-нейтрализа-торы, причем каждый бак-нейтрализатор должен вмещать обмывочные воды от обмывки одного РВП и реагенты для их обработки. В баках предусматривается осаждение ванадийсодержащего шлама, удовлетворяющего требованиям металлургических заводов.

На первой стадии нейтрализация осуществляется едким натром до величины рН, равной 4,5…5, для осаждения окислов ванадия и последующего отделения ванадийсодержащего шлама – на фильтр-прессах типа ФПАКМ. На второй стадии осветленную воду первого этапа раствором извести обрабатывают до величины рН, равной 9,5…10 – для осаждения окислов железа, никеля, меди, а также сульфата кальция. Полученный шлам направляют на нефильтруемый шламоотвал, а осветленная вода повторно используется для обмывок.

Средний ориентировочный размер стока обмывочных вод для крупной ГРЭС составляет 10…15 т/ч.

· Сточные воды химических очисток

Одним из основных недостатков этих сбросов являются их резкопеременный, «залповый» расход и меняющиеся концентрации, и состав примесей во время промывки. Это приводит к необходимости иметь емкости, которые как минимум должны быть рассчитаны на весь объем сбрасываемой воды с учетом ее трехкратного разбавления.

Наличие и концентрации некоторых примесей полностью зависят от метода промывки (С1-, формальдегид, гидразин и др.), в то время как концентрации железа, образователей пены практически одинаковы для всех методов. Для удобства подбора метода очистки промывочных вод их можно условно разделить на три группы по признаку влияния содержащихся в них примесей на санитарный режим водоемов:

1) неорганические вещества, концентрация которых не превышает значения их ПДК в водоемах; это сульфаты и хлориды кальция, магния и натрия;

2) токсичные вещества, содержание которых значительно превышает их ПДК в водоемах; это соли железа, меди, цинка, фторсодержащие соединения, гидразин;

3) органические вещества, аммонийные соли, нитриты, сульфиды, которые могут подвергаться бактериальному или непосредственному окислению; сброс таких веществ должен рассчитываться по БПК в водоеме.

Практически при обезвреживании промывочных вод должны подвергаться выделению вещества второй группы, а окислению до допустимых БПК – вещества третьей группы.

В основном способ очистки промывных и консервационных вод зависит от вида применяемого топлива и принятой схемы удале-ния золы. С этой точки зрения есть два варианта очистки таких вод:

1) очистка на ТЭС, работающих на жидком и газовом топливе, а также на ТЭС, работающих на твердом топливе с разомкнутой системой ГЗУ;

2) очистка на ТЭС, работающих на твердом топливе с замкнутой системой ГЗУ. На газомазутных ТЭС сбросы воды от водных промывок, содержащие грубодисперсные примеси, должны для их отделения направляться в открытую емкость, объем которой выбирается в зависимости от типа котлов и объемов промываемых контуров.

На газомазутных ТЭС и ТЭС с разомкнутой системой ГЗУ схема очистки промывных вод предполагает три стадии:

1) сбор всех отработавших растворов и части наиболее загрязненных отмывочных вод (рН < 6) в емкости-усреднители;

2) выделение из раствора токсичных веществ второй группы

с утилизацией осадка в баках-нейтрализаторах;

3) очистка воды от веществ третьей группы.

При обезвреживании сточных промывочных вод основными задачами являются разрушение образовавшихся при промывках комплексов металлов с реагентами, выделение этих металлов в осадок и разрушение органических соединений. Осаждение ионов тяжелых металлов (Fe, Cu, Zn) достигается при повышении рН до 11,0 (раствором извести) в случае применения для промывок растворов соляной, адипиновой, фталевой и дикарбоновых кислот. В случае же применения цитратного раствора при рН = 10 наблюдается полное разрушение цитратных комплексов железа. Комплексы меди и цинка с трилоном не разрушаются во всем интервале значений рН.

На ТЭС с замкнутой системой ГЗУ можно проводить сброс отработавших промывочных растворов непосредственно на золоотвал, если рН осветленной воды золоотвала выше 8,0. В противном случае требуется предварительная нейтрализация промывочных растворов. В любом случае для предотвращения коррозии багерных насосов значение рН в системе ГЗУ в результате сброса не должно быть ниже 7,0. Экспериментальные данные подтверждают высокую адсорбционную способность золы по отношению к примесям второй и третьей групп.

В сбросных водах после консервации оборудования в больших количествах присутствуют гидразин, нитрит натрия и аммиак. Удобным способом разложения гидразина является обработка раствора хлорной известью или жидким хлором.

Для осуществления процесса очистки сбрасываемых консервирующих растворов используется такая схема. Отработавший раствор собирается в баке, емкость которого должна быть достаточной для приема сразу всего его количества. В качестве таких емкостей используют баки для приготовления консервирующих растворов. Если процесс очистки организуется в баке-нейтрализаторе объемом около 20 м3, то в него направляют также реагенты и пар. Для ускорения процесса очистки и продувки раствора воздухом с коэффициентом эжекции не менее 10 организуется циркуляция при помощи насоса производительностью 80…150 м3/ч и напором до 20 кгс/см

с установкой водо-воздушного эжектора.

Для разложения нитрита вводится серная кислота в количестве, на 10…15 \% большем стехиометрического. Установлено, что нитрит разлагается более интенсивно, если кислоту подавать в два приема: сначала 50 \% расчетного количества, а через 1 ч – остальную часть. Продувка воздухом содействует ускорению разложения нитрита и гидразина и отдувке аммиака. Повышение температуры позволяет сократить процесс разложения примесей и расход воздуха на отдувку газообразных компонентов.

Недостатком обезвреживания кислотой является образование вредных окислов азота, утилизация которых при данной схеме не проводится. Общий недостаток описанных выше процессов очистки промывочных и консервирующих растворов – это большой расход реагентов, который существенно увеличивает солесодержание сбра-сываемых потоков воды.

Последние 15…20 лет широкое внедрение находит экологичный способ предпусковых и эксплуатационных очисток без применения реагентов, так называемый метод горячей водо-парокисло-родной очистки и пассивации теплоэнергетического оборудования. Метод заключается в обработке поверхностей горячей водой высокой чистоты (с электрической проводимостью не более 1 мкСм/см) и паром с определенной температурой и скоростью и высокими концентрациями кислорода (до 2…3 г/дм3). В результате этой обработки удается удалить отложения (до 300 г/м2) и создать на металле прочную защитную пленку, которая имеет стойкость по отношению к агентам коррозии такую же, как нержавеющая сталь.

· Системы гидрозолоудаления

ВТИ предложен опытно-промышленный способ очистки воды ГЗУ от фтора, ванадия, мышьяка, а также фенолов, который состоит из двух стадий. На первой стадии осуществляется обработка воды известью и углекислотой от дымовых газов, что приводит к осаждению карбоната кальция из-за превышения пределов его растворимости. При этом частично снижается и содержание фтора. Вторая стадия заключается в обработке полученной жидкости сернокислым алюминием с дозировкой его около 70 мг/дм3 в пересчете на безводный продукт. Такая двухстадийная обработка позволяет снизить содержание фтора от 60 до 1,5 мг/дм3 и полностью освободить от ванадия, мышьяка и фенолов.

С появлением замкнутых систем ГЗУ поддержание оптимального солевого баланса системы стало весьма необходимым и выполняется различными способами исходя из реальных условий и экономических соображений. Где это возможно, осуществляется продувка системы в водные объекты с соблюдением необходимых условий, а также выпаривание продувочной воды при помощи специальных устройств. Для удаления отложений на трубопроводах и оборудовании ГЗУ воду обрабатывают дымовыми газами (очистка системы от отложений). Для предотвращения отложений дозируют комплексоны (ИОМС), которые при чрезвычайно малых количествах предотвращают отложения солей.

· Воды тракта топливоподач

Загрязненные воды в основном подвергают отстаиванию, а осветленную воду используют повторно. Осевшие примеси, шлам периодически удаляют, отвозя его на штабель угля.

· Очистка и повторное использование

поверхностного стока ТЭС

При выборе схем очистки и использовании поверхностного стока нужно учитывать водный баланс электростанции, специфику ее эксплуатации (т.е. необходимую степень очистки стока) и экономическую целесообразность различных вариантов очистки и использования этих вод.

Возникновение дождевого стока вызывает необходимость строительства регулирующей емкости. Схема включает: песколовку, разделительную камеру, водосливное устройство, регулирующую емкость и отстойник. Если технология использования поверхностного стока не позволяет ограничиться полученной глубиной очистки (отстаиванием), необходимо предусмотреть дополнительное фильтрование. Доочищать сток можно на фильтрах, загруженных полукоксом канско-ачинских углей (КАУ) или антрацитом.

В зависимости от условий эксплуатации ТЭС можно рассматривать следующие основные схемы применения поверхностного стока: в оборотной системе охлаждения, для подпитки станционных систем водопользования (на химводоочистке или в испарительной установке), совместно с внутристанционными нефтесодержащими стоками, для смыва золы и шлака в систему гидрозолоудаления.

При использовании поверхностного стока для подпитки оборотной системы охлаждения, несмотря на повышенную в отдельные периоды минерализацию стока, карбонатная щелочность относительно невысока, поэтому подача его в оборотную систему не приведет к заметному нарушению ее водно-химического режима.

На химводоочистку с предварительной очисткой поверхностный сток может быть подан после отстаивания; на водоочистках без предочистки требуется дополнительная фильтрация. Если на электростанции имеются сооружения для очистки нефтесодержащих сточных вод, то поверхностный сток может направляться на них. При наличии нефтеловушек сток только аккумулируется, при их отсутствии он направляется на очистные сооружения после отстаивания. При подаче поверхностных вод в систему гидрозолоудаления требуется только аккумулирование стока. Очистка и использование поверхностного стока в цикле электростанции позволяет уменьшить загрязнение водоемов и водопотребление ТЭС.

Эксплуатация тепловых электрических станций связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и др.

Сточной водой является любой поток воды, выводимый из цикла электростанции.

К сточным, или сбросным, водам кроме вод систем охлаждения относятся: сбросные воды систем гидрозолоулавливания (ГЗУ), отработавшие растворы после химических промывок теплосилового оборудования или его консервации: регенерационные и шламовые воды от водоочистительных (водоподготовительных) установок: нефтезагрязненные стоки, растворы и суспензии, возникающие при обмывах наружных поверхностей нагрева, главным образом воздухоподогревателей и водяных экономайзеров котлов, сжигающих сернистый мазут.

Составы перечисленных стоков различны и определяются типом ТЭС и основного оборудования, ее мощностью, видом топлива, составом исходной воды, способом водоподготовки в основном производстве и, конечно, уровнем эксплуатации.

Воды после охлаждения конденсаторов турбин и воздухоохладителей несут, как правило, только так называемое тепловое загрязнение, так как их температура на 8…10 С превышает температуру воды в водоисточнике. В некоторых случаях охлаждающие воды могут вносить в природные водоемы и посторонние вещества. Это обусловлено тем, что в систему охлаждения включены также и маслоохладители, нарушение плотности которых может приводить к проникновению нефтепродуктов (масел) в охлаждающую воду. На мазутных ТЭС образуются сточные воды, содержащие мазут.

Масла могут попадать в сточные воды также из главного корпуса, гаражей, открытых распредустройств, маслохозяйств.

Количество вод систем охлаждения определяется в основном количеством отработавшего пара, поступающего в конденсаторы турбин. Следовательно, больше всего этих вод на конденсационных ТЭС (КЭС) и АЭС, где количество воды (т/ч), охлаждающей конденсаторы турбин, может быть найдено по формуле Q=KW где W - мощность станции, МВт; К -коэффициент, для ТЭС К = 100…150: для АЭС 150…200.

На электростанциях, использующих твердое топливо, удаление значительных количеств золы и шлака выполняется обычно гидравлическим способом, что требует большого количества воды. На ТЭС мощностью 4000 МВт, работающей на экибастузском угле, сжигается до 4000 т/ч этого топлива, при этом образуется около 1600…1700 т/ч золы. Для эвакуации этого количества со станции требуется не менее 8000 м 3 /ч воды. Поэтому основным направлением в этой области является создание оборотных систем ГЗУ, когда освободившаяся от золы и шлака осветленная вода направляется вновь на ТЭС в систему ГЗУ.

Сбросные воды ГЗУ значительно загрязнены взвешенными веществами, имеют повышенную минерализацию и в большинстве случаев повышенную щелочность. Кроме того, в них могут содержаться соединения фтора, мышьяка, ртути, ванадия.

Стоки после химической промывки или консервации теплосилового оборудования весьма разнообразны по своему составу вследствие обилия промывочных растворов. Для промывок применяются соляная, серная, плавиковая, сульфаминовая минеральные кислоты, а также органические кислоты: лимонная, ортофталевая, адипиновая, щавелевая, муравьиная, уксусная и др. Наряду с ними используются трилон Б, различные ингибиторы коррозии, поверхностно-активные вещества, тиомочевина, гидразин, нитриты, аммиак.

В результате химических реакций в процессе промывок или консервации оборудования могут сбрасываться различные органические и неорганические кислоты, щелочи, нитраты, соли аммония, железа, меди, трилон Б, ингибиторы, гидразин, фтор, уротропин, каптакс и т.д. Такое разнообразие химических веществ требует индивидуального решения нейтрализации и захоронения токсичных отходов химических промывок.

Воды от обмывки наружных поверхностей нагрева образуются только на ТЭС, использующих в качестве основного топлива сернистый мазут. Следует иметь в виду, что обезвреживание этих обмывочных растворов сопровождается получением шламов, содержащих ценные вещества - соединения ванадия и никеля.

При эксплуатации водоподготовки обессоленной воды на ТЭС и АЭС возникают стоки от склада реагентов, промывок механических фильтров, удаления шламовых вод осветлителей, регенерации ионитовых фильтров. Эти воды несут значительное количество солей кальция, магния, натрия, алюминия, железа. Например, на ТЭЦ, имеющей производительность химводоочистки 2000 т/ч, сбрасывается солей до 2,5 т/ч.

С предочистки (механические фильтры и осветлители) сбрасываются нетоксичные осадки - карбонат кальция, гидрооксид железа и алюминия, кремнекислота, органические вещества, глинистые частицы.

И, наконец, на электростанциях, использующих в системах смазки и регулирования паровых турбин огнестойкие жидкости типа иввиоль или ОМТИ, образуется небольшое количество сточной воды, загрязненной этим веществом.

Основным нормативным документом, устанавливающим систему охраны поверхностных вод, служат «Правила охраны поверхностных вод (типовое положение)» (М.: Госкомприроды, 1991 г.).

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ТЕПЛОЭЛЕКТРОПРОЕКТ

УТВЕРЖДАЮ:
Министр энергетики и
электрификации СССР
П. Непорожний
24 марта 1976 г.

РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ОБРАБОТКИ
И ОЧИСТКИ ПРОИЗВОДСТВЕННЫХ СТОЧНЫХ ВОД
ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

ИНФОРМЭНЕРГО

Москва 1976

Настоящее «Руководство» разработано Всесоюзным государственным ордена Ленина и ордена Октябрьской Революции проектным институтом «Теплоэлектропроект» и обязательно для применения при проектировании вновь строящихся и реконструируемых тепловых электрических станций.

«Руководство» разработано в развитие «Временных указаний по технологическому проектированию сооружений для очистки производственных сточных вод тепловых электростанций», которые с октября 1976 г. утрачивают силу.

«Руководство» согласовано с Министерством мелиорации и водного хозяйства СССР, Главрыбводом Министерства рыбного хозяйства СССР, Министерством здравоохранения СССР.

. Общая часть

Для пиковых котлов, оборудованных дробеструйной очисткой поверхностей нагрева, периодичность обмывок принимать один раз в год.

* Органические вещества присутствуют в виде солей органических кислот с железом, аммонием, натрием.

Следует рассматривать возможность подачи этих вод в систему бытовой канализации, имеющей в своем составе сооружения с полной биологической очисткой, на которых будет происходить доочистка их от органических соединений.

периодические расходы: загрязненный мазутом более 10 мг/л конденсат, дождевые и талые воды с обвалованной территории склада топлива и с участков территории мазутного хозяйства, загрязняемых в процессе эксплуатации, отмывочные воды фильтров конденсатоочистки, отводимые, как правило, через бак-усреднитель. 8.10 . На электростанциях, работающих на жидком топливе и газе, должна предусматриваться очистка сточных вод, загрязненных нефтепродуктами. Необходимо рассматривать возможность и целесообразность использования действующих или проектируемых очистных сооружений соседних промышленных предприятий или населенных мест.

Допускается подача загрязненных нефтепродуктами сточных вод в систему хозяйственно-фекальной канализации, имеющей в своем составе сооружения полной биологической очистки. Содержание нефтепродуктов в общем потоке сточных вод, поступающих на очистку, не должно превышать 25 мг/л.

8.11 . Очистку сточных вод от нефтепродуктов проектировать по схеме: приемный резервуар, нефтеловушка, механические фильтры.

Установка фильтров с активированным углем после механических фильтров должна быть обоснована.

Примечание . Допускается по условиям компоновки очистных сооружений проектировать вместо нефтеловушки напорную флотационную установку .

8.12 . Емкость приемного резервуара надлежит выбирать из расчета двухчасового притока расчетного расхода сточных вод и промывочных вод фильтров очистных сооружений.

Приемный резервуар необходимо оборудовать устройствами для улавливания плавающих нефтепродуктов и осадка, их отведения, а также для равномерной подачи воды на последующую ступень очистки.

Остаточное содержание нефтепродуктов после приемных резервуаров принимать 80 - 70 мг/л.

8.13 . Проектирование нефтеловушек (напорных флотационных установок) выполнять в соответствии с СНиП II-32-74 «Канализация. Наружные сети и сооружения» и СН 173-61 «Указания по проектированию наружной канализации промышленных предприятий» Часть 1.

Остаточное содержание нефтепродуктов после нефтеловушек (флотационных установок) принимать 30 - 20 мг/л.

8.14 . Уловленные в приемных емкостях, нефтеловушках (флотаторах) нефтепродукты надлежит подавать в расходные емкости мазутного хозяйства электростанции для последующего сжигания в котлах. Осадок от указанных сооружений складируется на шламоотвале с водонепроницаемым основанием, с последующим (после подсушки) вывозом в места, согласованные с органами Государственной санитарной инспекции. Емкость шламоотвала принимать из расчета накапливания в нем осадка в течение 5 лет.

8.15 . Механические фильтры проектировать с двухслойной загрузкой кварцевым песком и дробленным антрацитом (коксом).

Скорость фильтрации принимать 7 м/ч.

Остаточное содержание нефтепродуктов после механических фильтров принимать 10 - 5 мг/л.

8.16 . Скорость фильтрации для фильтров с активированным углем принимать 7 м/ч. Конечное содержание нефтепродуктов в очищенных водах после угольных фильтров - до 1 мг/л.

8.17 . Промывку механических и угольных фильтров предусматривать горячей водой с температурой 80 - 90 °С.

Расчетная скорость промывки - 15 м/ч.

8.18 . Вода, прошедшая очистку, должна использоваться повторно на технологические нужды электростанции: на подпитку оборотной системы технического водоснабжения или на питание водоподготовки.

При использовании очищенных от нефтепродуктов вод в системе оборотного технического водоснабжения, а также для питания водоподготовок, имеющих предочистку с известкованием, фильтры с активированным углем в составе очистных сооружений не предусматривать.

10.4 . Необходимо рассматривать возможность и целесообразность использования дождевых и талых вод с территории электростанции на собственные нужды: на подпитку оборотных систем водоснабжения, питание водоподготовок и пр.

10.5 . Дождевые и талые воды с кровли главного корпуса, как правило, через сеть внутренних водостоков необходимо отводить в систему технического водоснабжения, с кровли объединенного вспомогательного корпуса - на собственные нужды водоподготовки, приготовление реагентов и пр.

Приложение

Расчет величины продувки системы ГЗУ (методика расчета разработана ВТИ им. Ф.Э. Дзержинского)

Размеры минимальной продувки системы ГЗУ, необходимой для обеспечения концентрации сульфатов на безопасном, с точки зрения образования отложений, уровне определяются:

Для систем с мокрыми золоуловителями:


Для систем с сухими золоуловителями

где Q ор.в - расход воды на орошение мокрых золоуловителей, м 3 /ч;

Общая щелочность орошающей воды, мг-экв/л;

S пр - процентное содержание серы в топливе, приведенное к 1000 ккал/кг низшей теплотворной способности;

Y з и Y шл - количество соответственно золы и шлака, поступающих на золоотвал, т/ч;

Q ф - количество воды, теряемое из системы в резуль тате фильтрации, м 3 /ч;

Содержание сульфатов в золе, %;

Содержание сульфатов в воде, добавляемой в систему ГЗУ, мг-экв/л;

Q доб.в - количество воды, добавляемой в систему ГЗУ, м 3 /ч;

l - основание натуральных логарифмов;

τ - время пребывания осветленной воды в бассейне золошлакоотвала.

Если величина Q пр , определенная по приведенным уравнениям, окажется менее 0,5 % от расхода воды в системе, от организации продувки можно отказаться.