Технология RFID (Radio Frequency Identification) пока остается довольно дорогой для отечественного рынка и работает только на крупных складах. Но руководители компаний, уже внедривших методику, успели по достоинству оценить преимущества радиочастотной идентификации товаров. Технология позволила решить целый ряд проблем, связанных с хранением и учетом продукции.

Как работает RFID?

Система RFID Reader довольно проста в использовании. На каждую единицу товара наносится специальная метка, в которой зашифрованы все данные: вес, объем, дата погрузки или разгрузки, основные параметры хранения. На выходе из складского помещения монтируется металлический каркас с чувствительными RFID датчиками. Они сканируют метки на каждой упаковке, которую проносят через ворота, и отправляют информацию в общую базу данных.

Программу можно настроить на идентификацию личных карточек сотрудников или объединить с системой видеонаблюдения. Это позволит не только упростить учет и отслеживание перемещений товаров, но и сократит число нарушений на складах.

Примеры использования

В мире существует практика использования систем на основе RFID технологии. Радиометки используются в различных областях:

На одном из заводов Toyota , расположенном в США, радиочастотная идентификация помогает контролировать заполненность трейлеров при погрузке. Аналогичные технологии внедрены на предприятиях Shevrolet и в крупных азиатских портах. Метки наносят на крупнотоннажные контейнеры, а погрузочную технику оснащают считывателями. Это позволило повысить товарооборот, так как пропала необходимость пересчитывать и сверять большие объемы товара вручную. При такой системе отслеживания снижается количество ошибок, произошедших по вине человека.

На заводах Sony Electronics используют перезаписываемые RFID метки. Их наносят на кинескопы на поточных линиях завершающих этапов производства. Сканируя метку, система передает данные в центральную базу, а оператор получает информацию о тестировании и местонахождении конкретной единицы продукции.

В ряде европейских стран радиочастотные метки избавили автовладельцев от необходимости пользования кассой каждый раз при заправке автомобиля. Электронные считыватели монтируют непосредственно на топливные насосы. Система запускает подачу топлива после получения соответствующего сигнала от сканера.

Транспортные компании также взяли технологию на вооружение . Метки ставят в нижней части лобового стекла грузовиков. В каждой контрольной точке и в конечном пункте располагают радиочастотные сканеры. Считывается не только дата и номер транспортного средства, но и вся информация по товару: накладные, путевые листы и т. д. В процессе движения автомобиля полностью исключается бумажная работа, передача данных осуществляется через центральный сервер.

В нашей стране RFID технологии появились около десяти лет назад и применяются в основном на складах. Но производители радиочастотного оборудования уже наладили серийный выпуск, так как уверены в его активном внедрении.

Применение RFID на складах

Использование RFID технологии для склада оправдано с экономической и практической точек зрения, особенно, если речь идет о терминалах с большим товарооборотом. Приобретение оборудования для крупных компаний окупается довольно быстро.

Преимущества системы радиочастотных меток:

Специалистам, которые занимаются устройством RFID на предприятии, особое внимание стоит уделить тем задачам, которые будут поставлены перед системой. Необходимо определить оптимальную дальность считывания, настроить антенны соответствующим образом, изучить специфику технологических процессов на складе. Важно понять принцип перемещения товарных позиций. Например, упаковка, пронесенная через RFID -считыватель , не обязательно должна покинуть пределы склада. Она может транспортироваться на другой участок, поэтому система не должна отмечать ее, как отгруженную.

Перспективы RFID

Подобные технологии чипирования уже используются в России, например, в новых паспортах. Но система работает пока не так активно, как в развитых странах. Эксперты прогнозируют RFID большое будущее, вплоть до полного замещения современных компьютеров. Конечно, это случится не скоро. Пока технологии дорабатываются с целью расширения функциональности и повышения эффективности. Одно из самых перспективных направлений развития – это работа во всевозможных интернет-магазинах. Учитывая ежедневный оборот, их склады нуждаются в особо строгом учете товаров, отслеживании перемещений.

Положительный опыт применения RFID в этом качестве представила компания Paxar. Ее специалистами была создана программа Magicmirror, основанная на радиочастотных технологиях. Это некое электронное зеркало. Посетитель фирменного магазина одежды Paxar может выбрать в коллекции любую модель с RFID меткой и поднести ее к зеркалу. На дисплей выйдет подробная информация о составе ткани, доступных цветах и размерах. Программа на основании данных сканера предложит также аксессуары, подходящие к этому предмету одежды. С помощью радиочастотного считывателя покупатель сможет вызвать продавца-консультанта, находясь в примерочной кабинке.

Технология хороша, особенно в применении к товарным складам. Однако, на сегодняшний день разработчики систем сталкиваются с некоторыми сложностями. Пути решения проблем со временем должны быть найдены, но пока технология внушает пользователям некоторые опасения.

Сложности использовании RFID-технологии для склада

Итак, чего же опасаются разработчики и конечные пользователи радиочастотных сканеров:

  1. Цена . Первое оборудование, работающее по RFID технологии, было довольно громоздким и дорогостоящим. Оно неудобное в применении и требовало финансовых вложений, непосильных для мелких фирм. Инженерам удалось постепенно сделать установки более компактными. Ведь небольшие и легкие сканеры стоят дешевле, да и в использовании более просты. Стоимость же самих радиочастотных меток снижается не так быстро, как хотелось бы. Позволить себе оснастить весь склад микрочипами стоимостью в 10 евроцентов может далеко не каждая компания. Специалисты уверены, что как только стоимость меток упадет до 1 евроцента, спрос на них возрастет в разы.
  2. Компьютерные угрозы – вирусы. Средний объем памяти микрочипа всего 2 кб. Изначально считалось, что метку просто невозможно заразить вирусом, но амстердамские ученые доказали противоположное. Они не только заразили микрочип, но и проанализировали возможные последствия этой ситуации. Неисправная метка выдает недостоверную информацию или вовсе перестает работать. Радиочастотная передача данных заражает и сканеры, через которые проходит чип. Это нарушает работу центральной базы данных и может полностью остановить работу склада, что означает колоссальные убытки для фирмы. Что еще опаснее – вирус может распространяться по радиоканалам и на другие метки, вызывая хаос. В применении к гипермаркетам и другим крупным объектам последствия совершенно непредсказуемы.
  3. Возможность взлома . Собственно о взломе речь не идет, ведь чипы не защищены. Сканер способен считать информацию с большого расстояния, что дает большое поле для деятельности преступников. Любой человек, получивший товар с меткой, может воспользоваться считывателем и получить доступ к базе данных. Сюда относятся и сведения о кредитных картах покупателей, и другая конфиденциальная информация.
  4. Кража данных из электронных документов . Например, при считывании паспортов, сканер автоматически отправляет данные в центральный компьютер. В Германии, Англии и США RFID технологии давно используются в оборонном секторе и в сфере здравоохранения. Но недавнее исследования показали, что данные с чипов можно скопировать с расстояния 100 метров, имея специальный сканер. То есть преступник может получить доступ к самым важным сведениям, распространение которых совершенно недопустимо.

Все эти опасения имеют место и при использовании RFID на складах. Специалисты активно ищут методы «поломки» чипа после того, как вещь передана покупателю, но пока все они малоэффективны. Программы деактивации метки вызывают лишь ее усыпление, а не выведение из строя.

Вот несколько способов, которые изобрели сами потребители, желающие сохранить тайну личной жизни:

  • срезание антенны. В ряде случаев это сделать невозможно. Например, при удалении метки с одежды придется испортить ткань;
  • обработка вещи в микроволновой печи. Излучение вызывает взрыв чипа, что тоже не проходит бесследно для купленного товара.

Немецкие инженеры много лет трудились над созданием прибора, способного вызвать необратимую деактивацию RFID метки. Технология основана на сильном воздействии электромагнитного импульса. Но пока аппарат тестируется и в свободном доступе его не найти.

Системы защиты данных

При невозможности вывести из строя метку, ученые решили разработать способы ее защиты. На сегодняшний день их несколько:

  1. Защита данных паролем. Чип отправляет сканеру верные сведения только после введения секретного кода. Другой код может запустить программу самоуничтожения чипа, например, после покупки вещи. Технология оказалась уязвимой для хакеров, поэтому не нашла широкого распространения.
  2. Аппаратно-сетевая защита. Система блокирует все метки на складе и открывает нужную только по запросу. Программа постоянно сканирует эфир, предоставляя сведения о попытке несанкционированно считывания. Данная технология применима к чипам любой сложности и объема. Она достаточно эффективна и защищена от атак хакеров.
  3. Слом антенны. При покупке товара покупатель просто обламывает кончик антенны, ответственный за передачу данных на расстоянии. При возврате товара продавец может идентифицировать вещь, поднеся сканер вплотную к метке.
  4. Установка «глушилок». Устройство работает по принципу самих RFID-меток, копируя алгоритмы микросхем. Разница в том, что «глушилка» на запросы сканера выдает недостоверную информацию – цифровой мусор. Создание такого мешающего чипа осложняется тем, что он должен распознавать различные считывающие устройства и выдавать поток ненужной информации незарегистрированным приборам.

В перспективе, использование RFID-технологий в организации работы склада должно повысить скорость товарооборота и эффективность всей складской системы. Если есть серьезная программа защиты данных, или информация на чипах не представляет особой ценности для третьих лиц, то радиочастотные метки – отличное решение для любого бизнеса.

RFID (радиочастотная идентификация) использует электромагнитные поля для автоматической идентификации и отслеживания тегов, прикрепленных к объектам. Теги содержат электронно сохраненную информацию. Пассивные метки собирают энергию от радиосигналов соседнего RFID-считывателя. Активные теги имеют локальный источник питания (например, аккумулятор) и могут работать в сотнях метров от считывающего устройства. В отличие от штрих-кода, тег не должен находиться в пределах видимости прибора, поэтому он может быть встроен в отслеживаемый объект. RFID - это один из методов автоматической идентификации и сбора данных.

Применение

RFID-метки используются во многих отраслях промышленности. Например, считыватель RFID, прикрепленный к автомобилю во время производства, может использоваться для отслеживания прогресса по конвейерной линии. Фармацевтические препараты с маркировкой можно отслеживать через склады. Имплантация RFID-микрочипов в домашний скот позволяет идентифицировать животных.

Поскольку метки RFID могут быть прикреплены к деньгам, одежде и имуществу или имплантированы в животных и людей, возможность читать личную информацию без согласия пользователя вызывает серьезную проблему конфиденциальности. Эти риски привели к разработке стандартных спецификаций, касающихся вопросов безопасности личных данных. Теги также могут использоваться в магазинах для ускорения оформления заказа и предотвращения краж.

История

В 1945 году Леон Термен изобрел прослушивающее устройство для Советского Союза, которое повторно передавало радиоволны с добавленной аудиоинформацией. Звуковые колебания при вибрации влияли на диафрагму, которая слегка меняла форму резонатора, модулировавшего отраженную радиочастоту. Несмотря на то что это устройство было скрытым прибором для прослушивания, а не идентификационным тегом, оно считается предшественником USB RFID-считывателя, поскольку активировалось аудиоволнами из внешнего источника. Транспондеры по-прежнему используются большинством работающих самолетов. А раньше подобная технология, такая как считыватель RFID-меток, регулярно использовалась союзниками и Германией во Второй мировой войне для идентификации самолетов.

Устройство Марио Кардулло, запатентованное 23 января 1973 года, было первым истинным предшественником современной RFID, поскольку это был пассивный радиоприемник с памятью. Первоначальное устройство было пассивным, с питанием от опросного сигнала. Оно было продемонстрировано в 1971 году администрации Нью-Йорка и другим потенциальным пользователям и состояло из транспондера с 16-разрядной памятью для использования в качестве платного устройства. Основной патент Cardullo охватывает использование радиочастот, звука и света в качестве среды передачи.

Область использования

Первоначальный бизнес-план, представленный инвесторам в 1969 году, демонстрировал следующие сферы применения считывателя RFID:

  • использование в транспорте (идентификация автомобильных транспортных средств, автоматическая система оплаты, электронный номерной знак, электронный манифест, маршрутизация транспортного средства, мониторинг эффективности транспортных средств);
  • банковское дело (электронная чековая книжка, электронная кредитная карта);
  • персонала, автоматические ворота, наблюдение); медицинская отрасль (идентификация, история пациентов).

Ранняя демонстрация отраженной мощности (модулированного обратного рассеяния) RFID-меток, как пассивных, так и полупассивных, была выполнена Стивеном Деппом, Альфредом Коелле и Робертом Фрайманом в Национальной лаборатории Лос-Аламоса в 1973 году. Портативная система работала на частоте 915 МГц и использовала 12-битные теги. Этот метод применяется большинством современных UHFID и микроволновых RFID-считывателей. В современной жизни такие устройства очень востребованы.

Спецификация

Система радиочастотной идентификации использует метки, прикрепленные к идентифицируемым объектам. При изготовлении RFID-считывателя своими руками следует учитывать, что двусторонние радиопередатчики-приемники, называемые запросчиками или считывателями, посылают сигнал тегу и считывают его ответ. Метки RFID могут быть пассивными, активными или пассивными. Активный тег имеет встроенный аккумулятор и периодически передает его ID-сигнал. Пассивный аккумулятор (BAP) имеет небольшую батарею на борту и активируется при наличии считывателя RFID. Пассивная бирка дешевле и меньше, потому что у нее нет батареи. Вместо этого тег использует радиоволну, переданную считывателем. Однако для работы пассивного тега он должен быть освещен уровнем мощности примерно в тысячу раз сильнее, чем для передачи сигнала. Это влияет на интерференцию и облучение.

16.01.2014

Аббревиатура RFID расшифровывается как Radio Frequency Identification (в переводе с английского: радиочастотная идентификация). RFID (метод радиочастотной идентификации) – технология, которая для автоматической идентификации объектов использует радиоволны. Она может распознавать не только живые существа, но и неодушевленные предметы, к примеру, транспортные средства, контейнеры, одежду и многое другое. Другим примером Auto-ID являются штрих коды или биометрические методы (сканирование сетчатки глаза, использование отпечатков пальцев), а также система оптического распознавания символов и идентификация голоса.

Технология RFID широко применялась еще во времена Великой Отечественной войны. Тогда на самолетах только появились первые системы опознавания, которые позволяли распознавать и отличать свои воздушные войска от войск противника. После окончания войны технология больше не имела коммерческого успеха, но за последние годы все круто изменилось. Ею заинтересовались транспортные и логистические компании, что вывело стандарт на новый уровень.

Где используется технология RFID?

Решения на основе RFID можно использовать:

  • В сфере розничной торговли: для контроля за перемещением товара между складом и магазином, предотвращения краж, удобства проведения инвентаризации.
  • В отрасли производства и продажи меховых изделий: для обязательной маркировки шуб и меховых изделий контрольным идентификационным знаком.
  • В складских и логистических комплексах: для отслеживания перемещения товаров, увеличения скорости приемки и отгрузки, снижения влияния человеческого фактора.
  • На производствах: для контроля за персоналом и транспортом, обеспечения безопасности и предотвращения нештатных ситуаций, учета сырья.
  • В системах контроля доступа и платежных системах: для реализации бесконтактного автоматического доступа, оплаты услуг с помощью терминалов.

Применение технологии RFID:

  • приложения контроля доступа;
  • приложения контроля и учета рабочего времени ;
  • идентификация транспортных средств;
  • автоматизация производства;
  • автоматизация складской обработки.

Принцип работы RFID

Основа работы технологии: взаимодействие RFID-метки (RFID-тега) и RFID-считывателя (RFID-ридера). RFID-метка – миниатюрный чип, который хранит уникальный номер тега и информацию и обладает возможностью для передачи данных RFID-ридеру. Как только RFID-метка попадает в зону действия RFID-ридера, ридер фиксирует факт передачи данных, считывает информацию с метки и передает ее в учетную систему, которая анализирует данные по заранее заданным алгоритмам.

При этом между RFID-меткой и RFID-ридером может быть расстояние до 300 метров (системы, работающие на расстоянии от 5 до 300 метров относят к системам дальней идентификации, от 20 см до 5 м – идентификации средней дальности, до 20 см – системы ближней идентификации).

Преимущества технологии RFID

  • Большое расстояние считывания
  • Независимость от ориентации метки и ридера
  • Скорость и точность идентификации
  • Возможность работы через материалы, пропускающие радиоволны, нет необходимости в прямой видимости
  • Возможность считывания метки с двигающегося объекта
  • Возможность хранения дополнительной информации на метке и ее перезаписи
  • Сложность подделки RFID-меток
  • Одновременное чтение нескольких меток (при наличии антиколлизионной фунции)
  • Устойчивость к воздействиям окружающей среды, длительный срок эксплуатации

Система RFID состоит из:

  • RFID-Считыватель;
  • RFID-Метка;
  • Программное обеспечение.

Считыватель занимается генерированием и распространением электромагнитных волн в окружающее пространство. Данный сигнал принимается RFID-меткой, которая создает обратный сигнал, улавливающийся антенной считывающего устройства, затем полученная информация расшифровывается и обрабатывается электронным блоком. Объект, оснащенный RFID-меткой, идентифицируется с помощью уникального цифрового кода, который хранится в памяти электронной метки. К примеру, можно в считанные секунды получить индивидуальные данные пользователя или идентификационный номер того или иного товара.

RFID-метки: классификация

Источник питания

Основная используемая классификация RFID-меток основана на источнике питания – согласно ей, теги делятся на пассивные, активные и полупассивные.

Пассивные RFID-метки не имеют собственного источника питания и используют для работы энергию поля считывателя. В зависимости от архитектуры RFID-метки и типа ридера, пассивные теги работают только на небольшом расстоянии - до 8 метров, но при этом отличаются компактностью и доступной ценой.

Именно пассивные низкочастотные RFID-метки наиболее часто встречаются нам на товарах в магазинах – над повышением компактности тегов и снижением их стоимости работают представители ведущих мировых торговых сетей.

Активные RFID-метки оснащены собственным источником питания, поэтому могут получить дополнительные функции, работают на большем расстоянии и менее требовательны к считывателю. К их недостаткам, по сравнению с пассивными метками, можно отнести большой размер и ограниченное время работы источника питания (правда, на сегодняшний день речь идет о сроке жизни батареи до 10 лет), однако они незаменимы там, где необходим большой радиус работы (до 300 метров).

Активные RFID-метки по праву считаются более надежными, они могут передавать сигнал даже через воду или металл, а также их можно оснастить встроенными сенсорами для оценки температуры, влажности, уровня освещенности и других параметров окружающей среды. Таким образом, RFID-метки могут помочь отслеживать, к примеру, соблюдение условий хранения определенных категорий товаров.

Полупассивные RFID-метки работают по тому же принципу, что и пассивные, но оснащены батареей для питания чипа. Можно сказать, что такое решение является компромиссным в плане стоимости, размера и характеристик RFID-меток.

Исполнение

По исполнению RFID-метки могут представлять собой пластиковые карты, брелоки, корпусные метки, а также самоклеящиеся этикетки из бумаги или термопластика. Существует также формат «невидимой» этикетки, которая фактически вшивается в упаковку товара непосредственно на этапе производства.

Тип памяти

По типу памяти RFID-метки делятся на предназначенные только для идентификации (RO, Read Only), разработанные для считывания блока информации (WORM, Write Once Read Many) и перезаписываемые (RW, Read and Write).

RO RFID-метки используются исключительно для идентификации – данные уникального идентификатора записываются при изготовлении тега, поэтому скопировать их и подделать метку практически невозможно.

WORM RFID-метки позволяют однократно записать какие-либо данные, которые впоследствии можно будет многократно считывать и использовать. Это позволяет пользователю при получении дополнить метку своей информацией, которая затем будет использоваться при считывании.

RW RFID-метки содержат блок памяти, который позволяет многократно записывать и считывать информацию. Идентификатор RFID-метки при этом остается неизменным.

Рабочая частота

Классификация RFID-меток по рабочей частоте выглядит следующим образом:

  • Метки диапазона LF (125-134 кГц)

Характеризуются доступными ценами и определенными физическими характеристиками, которые позволяют использовать такие RFID-метки для чипирования животных. Обычно это – пассивные системы, которые работают только на маленьких расстояниях.

  • Метки диапазона HF (13,56 МГц)

RFID-метки такой частоты используются в основном для идентификации личности, в платежных системах, для решения простых бизнес-задач (например, для идентификации продукции на складе). Большинство RFID-систем, работающих на частоте 13,56 МГц, работает в соответствии со стандартом ISO 14443 (A/B) – именно на этом стандарте работает, к примеру, система оплаты проезда в общественном транспорте Парижа.

К недостаткам RFID-систем описанного диапазона можно отнести отсутствие достойного уровня безопасности, а также возможные проблемы со считыванием на большом расстоянии, в условиях высокой влажности, через металлические проводники.

  • Метки диапазона UHF (860-960 МГц)

Разработанные специально для работы с товарами на складах и в логистических системах, RFID-метки этого диапазона изначально не имели собственного уникального идентификатора. Предполагалось, что в качестве него будет использоваться EPC-номер товара, однако это не позволило бы контролировать подлинность метки, поэтому развитие систем на базе UHF-диапазона позволило усовершенствовать систему.

При этом к особенностям RFID-меток указанного диапазона относится высокая дальность и скорость работы и наличие антиколлизионных механизмов. Сегодня стоимость RFID-меток диапазона UHF является минимальной, однако цена прочего оборудования для работки в обозначенном диапазоне достаточно велика.

К отдельной категории UHF RFID-меток можно отнести теги ближнего поля. Используя магнитное поле антенны, технически они не относятся к радиометкам и могут считываться при высокой влажности и в присутствии металла. Массовое применение меток ближнего поля ожидается, например, в работе с фармацевтическими товарами, нуждающимися в контроле подлинности и строгом учете.

Разновидности RFID меток

Электронные метки бывают активными и пассивными. Активные идентификаторы снабжены собственным источником питания, дальность считывания таких устройств не зависит от энергии ридера. Пассивные метки не имеют своего источника питания, потому питаются от энергии электромагнитного сигнала, который распространяет считыватель. Дальность идентификации данных меток напрямую зависит от энергии, которую излучает ридер.

Каждый из этих видов устройств характеризуется своими преимуществами и недостатками. Пассивные метки хороши своим большим сроком эксплуатации, а также дешевизной в сравнении со своим активным аналогом. К тому же, пассивные идентифицирующие устройства не нуждаются в замене элементов питания. Недостатком устройства является необходимость в использовании более мощных считывателей.

Активные идентифицирующие устройства характеризуются высокой дальностью считывания информации в отличие от пассивных меток, а также возможностью распознавать и считывать данные при движении электронной метки на высокой скорости относительно считывающего устройства. Недостатком активных меток является высокая цена и громоздкость.

Типы RFID-идентификаторов в зависимости от рабочей частоты:

  • (ВЧ) Высокочастотные RFID-метки, работающие на частоте 13,56 МГц;
  • (УВЧ) Ультравысокочастотные RFID-метки, работающие в диапазоне частот 860-960 МГц. Данный диапазон используется в России, в Европе RFID-метки работают в диапазоне 863-868 МГц.

Способы записи информации на идентификатор (метку):

  • ReadOnly-устройства - идентификаторы, на которые можно записать информацию лишь единожды, дальнейшее изменение или удаление информации невозможно;
  • WORM-устройства - RFID-метки, которые позволяют однократно записывать и многократно считывать данные. Изначально в памяти устройства не хранится никакой информации, все необходимые данные вносит пользователь, но после записи перезаписать или удалить информацию невозможно;
  • R/W-устройства – идентификаторы, которые позволяют многократно считывать и записывать информацию. Это наиболее прогрессивная группа устройств, так как подобные метки позволяют перезаписывать и удалять ненужную информацию.

Технология RFID широко используется в производстве, розничной торговле , системах управления и контроля доступом, системах защиты от подделки документов и других областях. Она позволяет экономить время и сводит к минимуму использование ручного труда.

Особенности

Несмотря на достаточно высокую стоимость использования RFID-систем, их внедрение целесообразно везде, где важен высокий уровень безопасности и быстрая идентификация объектов. При этом особое внимание следует уделить выбору конкретного решения, который будет зависеть от множества факторов:

    Расстояние между RFID-метками и ридерами

    Наличие экранирующих поверхностей (например, металлических)

    Необходимость одновременного считывания данных с нескольких меток (защиты от коллизий)

    Необходимость защищенного исполнения меток, скрытого размещения меток

    Высокие требования к безопасности меток

    Хранение и перезапись данных

    Простота интеграции с используемой инфраструктурой

Please enable JavaScript to view the
  • IT-инфраструктура ,
  • Стандарты связи
  • RFID-метка для пациентов, чтобы их было видно на карте больницы

    - А можете каждому строителю чип в голову вшить?
    - Теоретически да, но, может быть, объясните, зачем вам это нужно?
    - Они у нас стройматериалы воруют. Прямо во время работ. А так каждого будет видно, куда он там зашёл, куда не надо.

    Проект решился вшиванием в форменную одежду RFID-метки, разделением стройки на зоны и дальше тем, что делается в сети при построении периметра. То есть построением профиля «белого» трафика - кто, куда и когда ходит. А потом - как на файрволле - запретили строителям всё остальное. Кражи сразу сократились. Прораб получил потустороннюю силу и видел почти каждый косяк.

    А дальше каждый чёртов раз, когда я рассказываю про RFID-решение, люди начинают махать руками и путать эти метки с Wi-Fi, Bluetooth и пассивными резонирующими контурами. Одна из причин - некоторые RFID-метки действительно работают по Wi-Fi 802.11. Давайте расскажу, как это используется на практике в разных странах.

    Пассивные и активные RFID

    Есть два вида RFID-меток. Первые - те, которые не имеют собственного бортового питания и просто резонируют в магнитном поле. Такие вы чаще всего видите в магазинах от книжного до одежды, и даже на колбасе в продуктовом. Они очень дешёвые, маленькие и надёжные, если у злоумышленника нет сумки, сплётённой из проволоки по принципу клетки Фарадея.


    Пассивные метки

    Активные радиометки - это уже не резонирующий, а самостоятельно излучающий контур. Трансляция сигнала идёт постоянно и на существенно большее расстояние. Активные метки дороже, больше, но зато могут отдавать большее количество данных. Активные метки, очевидно, куда проще считывать - соответственно, сами считыватели будут на два порядка меньше и на порядок менее требовательными к питанию.


    Активные метки

    Обычная дальность сработки для пассивной метки - 3 метра, для активной - 100–500 метров.

    «Большие» активные метки, чтобы два раза не вставать, снабжают и разными сенсорами. Возможность непрерывного мониторинга и передачи в радиоэфир сигнала даёт возможность вещать уровень температуры, влажности, оповещать о толчках и ударах, уровне вибрации, показывать уровень освещённости, загазованности (в том числе качественно, например, только по углекислоте), вещать уровень радиации. И писать логи во внутреннюю память - 512 килобайт уже не кажутся фантастикой.

    Перечисленные метки очень активно применяются на разных производствах.

    RFID over Wi-Fi 802.11

    Теперь мы добрались до самых интересных и крупных RFID-меток. Это 802.11-совместимые радиоустройства, которые вещают на частотах от 2,4 до 2,4835 ГГц или 5,8 ГГц до 5,825 - в тех самых «бытовых» диапазонах. А прелесть их в в том, что они «из коробки» являются полноценными частями Wi-Fi-инфраструктуры и не требуют никаких промежуточных протоколов или интерфейсов для общения.


    Не все поддерживают 5GHz - например, эта 802.11 b/g/n, 2.4GHz

    Пациенты далеко не уйдут

    Метка как на картинке сверху поста внедрялась в иностранном госпитале. Её цепляли пациентам на пояс. Она передаёт базовую телеметрию без дополнительных примочек - просто положение пациента (в случае больницы - ближайший излучатель, соответствующий палате или коридору). Если на неё надавить пальцем по углублению, то можно вызвать сестру, если надавить сильно или упасть лицом в пол вместе с меткой - вместо сестры прибежит сразу врач.

    Она 802.11 b/g/n, мощность сигнала омниантенны +11.5dBm, 2.4 - 2.4835 GHz, протокол - UDP/IP или DHCP, заявлено 16 Мбит/с на 40 метров, 6 Мбит/c на 100 метров. Защита Open/WPA2, батарейка не извлекается, на морозе умирает через сутки-двое, есть некий класс защиты от дождя. Размер - примерно как таракан из «Пятого элемента», 3х5 сантиметров и чуть меньше сантиметра в высоту. Весит 2 грамма (столько крови в мышке-полёвке). Сзади клипса или липучка.

    Больница в Канаде поставила эти метки и на персонал тоже - просто посмотреть, что можно сделать дальше. Выяснилось, что с помощью таких вещей можно очень повысить безопасность выполнения разных процедур, оптимизировать потоки пациентов, упростить работу по ведению журнала для охраны, мониторить всякие разные параметры с внешних датчков. Лучшая история - противный писк, если не вымыть руки, когда пришёл из «грязной» зоны.

    Финал - внедрение меток на всё ценное оборудование. Начали просто с быстрого поиска предметов вроде коек, носилок и инвалидных кресел, но потом поняли, что можно снимать телеметрию с приборов. И подключили к уведомлениям а-ля Zabbix все медицинские мониторы, аппараты ИВЛ и т. п.

    Поиск халявщиков на производстве

    Ещё одно интересное внедрение делалось на американском производственном комплексе. Для начала каждый контейнер и каждая отдельная учётная единица (палета или ящик) снабжались пассивной RFID-меткой, для того чтобы вести точный учёт продукции и знать, что и как расходуется. Уже одно это несколько уменьшило, как написали в отчёте, «непроизводственные потери» - похоже, у них в Америке так же весело воруют, как и на привычных нам заводах.

    Затем метки повесили на форму рабочих - это сделано по требованиям безопасности труда. На части меток - функция «одинокий рабочий», когда нужно двигаться или теребить метку раз в 5–10 минут. Не сделал - она противно пищит, а через 15 секунд отправляется SOS.

    Затем, отслеживая потоки рабочих и материалов, аналитики производства стали искать проблемы. Нашли пару ручных процедур, которые совершенно не нужны были на заводе, автоматизировали часть процессов, разгрузили внутреннюю логистику за счёт правильного расположения складов и правильного учёта смен. В общем, смогли сделать так, чтобы рабочие не простаивали и не ждали чего-то, а постоянно работали. На последней стадии собирались делать интеграцию для автоматического назначения задач работникам в реальном времени (на момент внедрения это делалось в начале смены).

    И финал - автоматизация журналов учёта транспорта и материалов, быстрые инвентаризации и контроль остатков.

    В школе

    Для одной американской же школы внедряли RFID+Wi-Fi весьма оригинальным способом. У каждого ученика - обычная Wi-Fi-совместимая метка, а у учителей - небольшие Wi-Fi-терминалы с возможностью отправки и приёма сообщений.


    На базе ARiSTA Flow

    Директор школы может отправлять сообщения учителям, а учителя могут реагировать записанными шаблонами вроде «понял», «срочно подойдите» и т. п. Эта же система включается по пожарной тревоге и другим ЧС - учителя получают информацию о том, куда надо выводить класс, то есть фактически маршрут эвакуации.

    В каждом классе стоит считыватель (точка доступа Wi-Fi), который «видит» и пересчитывает учеников. Журнал посещаемости формируется автоматически. Школьный интранет подключён к серверу, который смотрит в большой Интернет, и родители могут логиниться с приложения или прямо через web-форму и смотреть, в каком месте школы сидят их дети, и заодно - дневники.

    Самое интересное сделано в школьном автобусе, который собирает детей по району. Дети с метками садятся в автобус, а там установлена почти такая же функциональная инфраструктура, и родители могут убедиться, что ребёнок нормально сел, и видеть автобус на карте (он отдаёт координаты своего GPS-датчика).

    Учители стали вешать отдельные метки ещё на проекторы и другое оборудование, чтобы знать, где оно находится точно, поэтому в проекте ещё разметка инвентаря школы.

    Как это выглядит

    Один из примеров решения - RFID over Wi-Fi Cisco.

    Mobility Services Engine (MSE) агрегирует данные об уровне сигнала от всех беспроводных устройств и отправляет их на приложение MobileViewс. MSE также предоставляет богатый набор функций, начиная с безопасности - Cisco CleanAir, обнаружение местоположения несанкционированных устройств, системы предотвращения вторжений через Wi-Fi (wIPS) и аналитика местоположения.

    Или MobileView - это веб-приложение для отображения отслеживания перемещений активов, включая сообщения тревоги, основанные на перемещениях по заданным зонам.

    RFID-метки с телеметрией, кнопками вызова, датчиками температуры и влажности.

    Вот метки персонала:

    Range Outdoor range: Up to 200m (650 feet) Indoor range: Up to 80m (260 feet)
    Physical and Mechanical Dimensions (incl. Flange): 80mm x 40.6mm x 20mm (3.14in x 1.60in x 0.8in) Total Weight (Incl. Retractable reel): 53g (1.86oz). Radio 802.11 b/g/n compliant (2.4 GHz) Low frequency receiver for chokepoint detection (125kHz) Transmission power: up to +19dBm (~81mW) Patented clear channel sensing avoids interference with wireless networks. Ultrasound Receiver Frequency: 40KHz.

    Работает до 2 лет без замены батареи. Зависит от конфигурации в системе.
    Включает в себя ультразвуковой передатчик с частотой 40kHZ, данные сигналы распространяются только в пределах комнаты, что необходимо для точности работы системы обнаружения местонахождения. RFID-метка через ультразвук получает запрос от специального передатчика, который установлен в комнате, и отправляет ответ через Wi-Fi, определяя местоположение человека.

    Метки активов:

    45mm x 31mm x 18mm (1.7in x 1.2in x 0.7in) Weight: 26g (0.92oz), Radio 802.11 compliant (2.4 GHz) Low frequency receiver for chokepoint detection (125kHz) Transmission power: up to +19dBm (~81mW) Patented clear channel sensing avoids interference with wireless networks. Ultrasound Receiver (optional) Frequency 40KHz.

    В данной метке установлена батарея 3.6V с возможностью замены. Продолжительность работы - до 4 лет. Метка посылает информацию о заряде на систему MobileView. Метка оснащена сенсором движения, и в случае движения она начинает посылать сигнал на систему мониторинга. Интервал передачи настраивается в диапазоне от 1 секунды до 3,5 часов. Включает в себя ультразвуковой передатчик с частотой 40kHZ, данные сигналы распространяются только в пределах комнаты, что необходимо для точности работы системы обнаружения местонахождения. RFID-метка через ультразвук получает запрос от специального передатчика, который установлен в комнате, и отправляет ответ через Wi-Fi, определяя местоположение актива.

    Устройство настройки метки:


    Radio Wi-Fi 802.11 (2.4 GHz); b/g/n compliant* Bluetooth 4. 1 (2.4 GHz)* Low Frequency receiver (LF) 125kHz Transmission power: Up to +19dBm (~81mW). Это сенсор, данное устройство позволяет оперативно проводить конфигурацию RFID-меток.

    Ультразвуковой LF-передатчик (разные варианты):

    Ультразвуковой передатчик подключается к ЛВС и питается по PoE. Он постоянно отправляет запрос на частоте 40 KHz. На данной частоте сигнал распространяется только в пределах помещения, где установлен передатчик. Когда в помещении появляется активная RFID-метка, то она получает сигнал и производит передачу по Wi-Fi своих данных на систему мониторинга MobileView. Есть несколько видов LF-передатчиков, они отличаются дальностью передачи сигнала и возможностями для монтажа.

    Благодаря данным устройствам получается сохранить заряд на активных метках, потому что метка при выходе из зоны работы LF-передатчика может отключаться и перестать передавать информацию через Wi-Fi.

    В целом, надеюсь, стало чуть понятнее, как это работает. В России использование таких меток пока крайне мало распространено, но мы сейчас уже готовим первые крупные внедрения. Если есть вопросы не для публичного обсуждения, то моя почта - [email protected].

    Технология RFID (Radio Frequency Identification — радиочастотная идентификация) основанна на использовании радиочастотного электромагнитного излучения. RFID применяется для идентификации и учета объектов.

    RFID — технология идентификации, которая предоставляет большие возможности. Наиболее распространенные RFID-метки, как и многие штрих-коды, представляют собой самоклеящиеся этикетки. Но если на штрих-коде информация хранится в графическом виде, то на метку данные заносятся и считываются при помощи радиоволн.

    Как это работает

    RFID-метка - миниатюрное запоминающее устройство. Она состоит из микрочипа, который хранит информацию, и антенны, с помощью которой метка передает и получает данные. Иногда RFID-метка имеет собственный источник питания (активная), но большинство меток во внешнем питании не нуждаются (пассивная).

    В памяти RFID-метки хранится уникальный номер и информация. Когда метка попадает в зону регистрации, эта информация принимается RFID-считывателем.

    Для передачи данных пассивные RFID-метки используют энергию поля считывателя. Накопив необходимое количество энергии, метка начинает передачу. Дистанция регистрации пассивных меток 0,05 - 8 метров, в зависимости от типа RFID-считывателя и архитектуры метки.

    Где это применяется

    Сфера применения RFID постоянно расширяется. Технология востребована в отраслях, где требуется контроль перемещения объектов, интеллектуальные решения автоматизации, способность работать в жестких условиях эксплуатации, безошибочность, скорость и надежность.

    На производстве с помощью RFID ведется учет сырья, контролируются технологические операции, обеспечиваются принципы JIT/JISи FIFO. RFID-решения на производстве обеспечивают высокий уровень и стабильность качества продукции.

    На складе с помощью RFID в реальном времени отслеживается перемещение товаров, ускоряются процессы приема и отгрузки, повышается надежность и прозрачность операций и снижается влияние человеческого фактора. RFID-решения на складе обеспечивает защиту от воровства и хищений продукции.

    В индустрии потребительских товаров и розничных продаж RFID-системы отслеживают товар на этапах поставки, от производителя до прилавка. Товар вовремя выставляется на полку, не залеживается на складе и отправляется в те магазины, где на него высокий спрос.

    В библиотеке RFID помогает найти в хранилище и выдать читателю книги, предотвратить хищения. Исчезают очереди на выдаче. Сокращается время подбора и поиска нужного издания, упрощается инвентаризация.

    RFID-метки применяются в маркировке шуб и других меховых изделий. Каждое изделие маркируется Контрольным (идентификационным) знаком (КиЗ) со встроенной в него RFID-меткой.

    Множество областей бизнеса и повседневной жизни можно улучшить благодаря RFID-технологии. Потенциал применения RFID огромен.

    Компоненты RFID-системы

    • RFID-метки — устройства, способные хранить и передавать данные. В памяти меток содержится уникальный идентификационный код. У некоторых RFID-меток память может перезаписываться.
    • RFID-считыватели — приборы, которые читают информацию с меток и записывают в них данные. Подключаются к учетной системе и работают автономно.
    • Учетная система — программное обеспечение, которое накапливает и анализирует полученную с меток информацию и связывает все элементы в единую систему. Современные учетные системы (программы семейства 1С, корпоративные информационные системы — MS Axapta, R3Com) совместимы с RFID-технологией и не требуют специальной доработки.

    Преимущества радиочастотной идентификации

    1. Данные RFID-метки перезаписываются и дополняются много раз, тогда как данные на штрих-коде неизменны — они записываются сразу при печати.
    2. RFID-считывателю не требуется прямая видимость метки, чтобы считать ее данные. Взаимная ориентация метки и считывателя не играет роли. Метки читаются через упаковку, что делает возможным скрытое размещение. Для чтения данных метке достаточно попасть в зону регистрации, в том числе при перемещении на высокой скорости. Устройству считывания штрих-кода необходима прямая видимость штрих-кода для чтения.
    3. RFID-метка считывается на значительно большем расстоянии, чем штрих-код. В зависимости от модели метки и считывателя радиус считывания составляет до нескольких десятков метров.
    4. . RFID-метка может хранить значительно больше информации, чем штрих-код. До 10 000 байт могут храниться на микросхеме площадью в 1 квадратный сантиметр, а штриховые коды вмещают 100 байт (знаков) информации, для воспроизведения которых понадобится площадь размером с лист формата А4.
    5. Промышленные RFID-считыватели одновременно считывают десятки RFID-меток в секунду, используя антиколлизионную функцию. Устройство считывания штрих кода может единовременно сканировать только один штрих-код.
    6. Для автоматического считывания штрихового кода, комитетами по стандартам (в том числе EAN International) разработаны правила размещения штрих-кодов на товарной и транспортной упаковке. К радиочастотным меткам эти требования не относятся. Единственное условие — нахождение метки в зоне действия RFID-считывателя.
    7. RFID-метки обладают повышенной прочностью и сопротивляемостью жестким условиям среды, а штрих-код легко повреждается (например, влагой или загрязнением). В тех сферах, где один и тот же объект используется много раз (например, при идентификации паллет или возвратной тары), радиочастотная метка - лучшее средство идентификации, так как не требует размещение на внешней стороне упаковки. Пассивные RFID-метки неограничены сроком эксплуатации.
    8. RFID-метка используется не только как хранитель информации, это интеллектуальное устройство широкого спектра применения с уникальным идентификатором. У штрих-кода нет интеллекта и он просто хранит данные.
    9. Неизменяемое число-идентификатор, присваиваемое метке при производстве, гарантирует защиту меток от подделки. Данные на метке легко шифруются. Как цифровое устройство, радиочастотная метка при необходимости защищается паролем и зашифровывается. В одной метке можно одновременно хранить открытые и закрытые данные.

    Что нужно помнить при внедрении RFID

    При работе с радиочастотной идентификацией нужно учитывать некоторые ограничения: относительно высокая стоимость, невозможность размещения под металлическими и экранирующими поверхностями, взаимные коллизии.

    Относительно высокая стоимость RFID-меток. Цена пассивной RFID-метки начинается с 0,15 доллара (при приобретении свыше 1 000 000 шт.) до 3 долларов (при приобретении 1 шт.). В случае с метками защищенного исполнения (или на металл) эта цена достигает 7 долларов и выше. Таким образом, стоимость RFID-меток выше стоимости этикеток со штриховым кодом. Использование радиочастотных меток целесообразно для защиты дорогих товаров от краж или для сохранности изделий, переданных на гарантийное обслуживание. В логистике и транспортировке грузов стоимость радиочастотной метки незначительна по сравнению со стоимостью содержимого контейнера, поэтому использование радиочастотных меток оправдано на упаковочных ящиках, паллетах и контейнерах.

    Возможное экранирование при размещении на металлических поверхностях. RFID-метки подвержены влиянию металла (это касается упаковок определенного вида — металлических контейнеров или упаковки жидких пищевых продуктов, запечатанных фольгой). Это не исключает применение RFID, но приводит к необходимости использования меток, разработанных специально для установки на металлические поверхности или к нестандартным способам закрепления меток на объекте.